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1. Preface

My interest in the usage of computers for didactic purposes dates back to discussions I
had with Marko Jaric when we envisioned a project for writing an interactive book for
teaching nonperiodic structures and quasicrystals. We never actually started the
enterprise (life is always complex), but a few years later, when Marko had already
passed away, I began a project about using computers for teaching elementary
geometry. The work is somehow inspired by the old discussions we had in Santa
Cruz.

2. Introduction

2.1 The panorama

In a world that is changing at an impressive pace, education is bound to become a
lifelong activity. The way we provide education also needs to change, to lower its
costs and increase the efficiency of the educational process.

It is commonly believed that by exploiting multimedia and computer networks it will
be possible to provide some form of education in an efficient and effective way. In
fact, recent advances in hardware technology have delivered to the final user an
impressive amount of computational power while dropping the cost of personal
computers to the level of commodities like HiFi's or large TV sets. The net effect is
that by now many families can afford to give to high school kids the computational
power that only a few years ago could only be delivered by a supercomputer. Such
huge power can be used to exploit the communicative power of multimedia.
Moreover, in a few years Internet or its evolution will become almost as common as
telephones. ‘

However, it is not clear how in practice the educational process can profit of the new
media. Much research and imagination is needed to find a convincing answer. Since
the sixties the concept of computers taking the role of teachers (or at least helping
them) has been with us, but in spite of the frequent change of name of the discipline
(from Computer Aided Instruction to Computer Based Education, to Intelligent Tutor
Systems etc.) embarrassingly little has been achieved.

Education is about transferring knowledge (to know), abilities (to know how to do)
and behavior (to know how to be). It is mostly achieved in a person to person
interaction, helped by the delivery of a body of knowledge packaged in an organized
way (books) and by (individual or group) activities which are focussed to anticipate
and/or reproduce situations which might arise in "the real world" (e.g. laboratory
activity).

Focus on the knowledge to be transferred has lead to the creation of hyperbooks and
to the construction of extensive Virtual Libraries. The process is in progress at a quick
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pace, but much has to be done, especially for enhancing the retrieval of meaningful
information.

However "the next wave of educational support ... moves beyond providing access to
more information to providing support for the process of engaging in the solution of
complex problems as a collaborative endeavor" [Watt 98].

As a matter of fact, the exploitation of the new technology is aimed at enhancing
education on at least three more facets:

- Creation of collaborative environment to facilitate the interaction among students.
- Enhancement of the interaction between student and a teacher/tutor/mentor;

- Creation of virtual environments for safe, inexpensive experimentation,

Collaborative environment and interaction between student and teacher can profit of
telecommunication technology, which can be synchronous (like videoconference) or
asynchronous (e-mail, notes delivered as Web pages, shared bulletin boards or ad-hoc
collaborative tools). However the big chailenge here is probably to understand how
the communication through the media differs from a face to face interaction, and to
find a methodology which effectively uses the available technology.

Virtual environments are in use since many years in dangerous or costly activities,
and have a formidable success in the form of videogames, much less for high school
education, although simulation activities and virtual labs start now to be rather
common. Of course it would also be nice to be able to synthesize a tutor which
monitors the activity of the student, and helps her/him when difficulty arise. However,
most of the efforts aimed at producing intelligent behavior from machines have failed,
and the ambitious dreams of Artificial Intelligence have not survived into the 90'.

Is spite of the limited successes obtained, it is possible to focus on simple, limited
domains and to produce systems which can exhibit at least some degree of intelligent
behavior.

2.2 Goals of the project

I envisioned a project for teaching elementary geometry using a virtual environment

that embodies some amount of intelligence. The final tool will allow a high school

student to read a problem regarding plane geometry and to use the computer to:

- Draw the elements which define the problem (points, lines, arcs, angles,
polygons),

- Express the relations among elements contained in the hypothesis,

- State the thesis,

- Build a demonstration by expressing facts about the elements.

The project has several stages, the first of which has been completed in a prototypal
way [Tave99]. The first generation tool "knows" theorems about plane geometry, and
is therefore able to check the validity of the assertions made by the student, rejecting
them if they are false. The student is therefore helped building a demonstration, since
false assertions are caught early.

The second stage, now in progress [Brug99], develops an automatic theorem prover
that can construct a demonstration as soon as the thesis is expressed. If the student is
in trouble and does not know how to proceed, s/he can ask for help: the tool extracts
from its demonstration some suggestion that can help the student proceed.

The third phase, currently at a project stage, recognizes that often the main difficulty
for the student is to correctly understand the statement of a problem and to build a
correct drawing for it. We plan to use an existing natural language interpreter to build
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a representation of the problem so as to be able to validate the drawing made by the
student, and in case it is incorrect to provide some feedback.

Of course the system must be easy to use, and the user interface must be simple and
powerful. The last challenge would be to dress the system so as to make it appealing
like a game (maybe also incorporating factlities for collaborating with other students).

3. Geometry theorem proving

3.1 The background

Programs that prove geometry problems date back to the early years of computer
science, when in the early spring of 1959 the program "Geometry Machine" by
Gelernter [Gele59] proved its first geometry theorem mechanically using an axiomatic
approach. Since then many research groups worked on the problem: a bibliography of
the most important and significant papers on geometry theorem proving runs for
twelve pages [Wang94].

An axiomatic approach however makes proving and discovering non-trivial theorems
difficult, because the problem of a too large searching space makes the method highly
" inefficient. In recent years the availability of larger memories and faster CPU's has
revitalized the assiomatic approach: Quaife used the automated reasoning program
OTTER to prove a large number of theorems in plane geometry [Quai92].

A symbolic manipulation approach was followed by Cerutti and Davies [Ceru] in
1969, but a breakthrough in geometry theorem proving was obtained by Wu ten years
later [Wu78], using an elegant algebraic approach. Wu observed that most geometric
relations can be expressed by means of polynomial equations. Therefore, proving
most geometric theorems can be reduced to manipulating the corresponding algebraic
relations. A similar approach based on the application of Grobner bases was first
applied by Buchberger [Buch85] and has often been used since. The main problem
with the algebraic approaches is that the constructed proofs are not readable and
interpretable: the prover therefore becomes a sort of black box, which outputs a
boolean value.

An approach based on the resolution of logical formulae is not as "black", but
certainly at least a "gray" box: an output of hundreds of logical clauses can hardly be
used to "understand" a proof.

Other approaches express statements on geometric entities such as distances, vectors,
areas and volumes rather than point coordinates, and use algebraic manipulation on
them to produce shorter and more readable demonstrations. This so-called coordinate-
free method is usable for some classes of geometry problems and started with the
work by Crapo [Crap87].

3.2 Our approach

Our original aim was to re-use whenever possible the available knowledge, and the
relative software. Unfortunately, after testing a few prover available on the net, we
realized that all proofs produced by the above mentioned methods are unusable to
guide a high school student in her/his discovery process. On the other hand, we do not
need terribly efficient algorithms that are able to prove very complex problems. We
therefore decided to develop our own prover, the requirement being that its
"reasoning” should be as close as possible to that of a human being.
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Our first choice was never to rely on numerical values (for coordinates, length, area
etc.) since we want our demonstrations not to depend on the particular instance
chosen. We wanted to recognize configurations, in which one of the known theorems
can be applied; apply the theorem and add its consequences among the known facts.
By iteration then one would proves the thesis, or reaches a dead state in which no new
information can be added. This limits the scope to the problems which can be solved
without making geometrical constructions beyond what is suggested by the thesis: it is
not a too severe limitation as long as only high school problems are involved.

The second choice was to approach the problem in an Object-oriented way. We chose
Java as implementation language for several reasons:
- Javais a clean Object Oriented language (unlike C++ or, worse, Visual Basic)
- Java has a nice set of graphic classes

.- Java is portable on any platform (although most of the world is running Wintel

PC's, this is anyway a plus).

We developed a hierarchy of classes representing geometric primitives. These are
called G_Point, G_Line, G_HalfLine, G_Segment, G_Angle, G_Triangle. They are
all subclasses of an abstract class called G_Object which implements some common
methods (e.g. setName) and defines an interface for some other method (e.g. draw) so
as to force the implementation by the subclasses. G_Objects have a graphic
representation so that it is possible to draw them on screen, but their geometric
coordinates are in no way used in the demonstration. One of our final goals is to be
able to show the student that if the original figure is stretched (but the hypothesis
constraints are respected) the demonstration still holds.
Relationships among instances of these classes represent properties. Properties of
G_Objects can be Reflexive, Symmetric and Transitive (RST-Properties: e.g. equal
amplitude of G_Angles) or Symmetric (S- Properties: e.g. two G_Lines can be
orthogonal to each other). The implementation of RST-Properties and S-Properties as
sets and relations among sets allows to some degree a quick and simple dxscovery of
new facts, as we shall discuss in the next two paragraphs.

3.3 The RST-Properties

Let us consider the RST-Properties which can be interesting (e.g. parallelism of
straight lines, equal length for segments, etc). Each RST-Property defines an
equivalence class, which we will call a G_Set.

When a G_Object is instantiated, a new G_Set is associated to each RST-property
available for that G_Object. For instance, when a line is created, the G_Set of the
lines parallel to it will be created. The G_Set is initially populated only with the
G_Object (i.e. a line is parallel to itself).

When two G_Object are proved to satisfy an RST-property, the corresponding G_Sets
are merged. For instance, let us assume that we already know that line rl is parallel to
line r2: r1 and r2 therefore share a common G_Set. Let's assume there also is a third
line r3 about which we do not know anything. We can represent the configuration as:

Parallel{rl,r2} Parallel{r3}

meaning: a G_Set relative to the Parallel RST-Property contains rl and r2, and a
separate G_Set relative to the Parallel RST-Property contains r3.

Now, let's imagine that r3 is proved to be parallel to rl: we must therefore merge the
G_Setof rl and the G_Set of r3. The resulting G_Set contains rl, r2, and r3;

Parallel{r1,r2,r3}
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We therefore now know that r3 is parallel to r2. A possibly large number of logical
inferences are done in one single step.

By choosing G_Set to be a subclass of G_Object, we allow recursivity. That means
that also a G_Set (being a G_Object) can have a G_Set associated to an RST-
property. As an example let's consider the similarity of triangles. A G_Triangle

. (subclass of G_Object) has a G_Set linked to the property "Congruent". The G_set
has another G_Set linked to the property "Similar". Let us now we consider three
triangles A, B and C, and let A be congruent to B, and C similar to B. There is another
triangle D about which we do not know anything. The resulting structure can be
represented as:

Similar{Congruent {A, B}, Congruent {C}} Similar{Congruent {D}}

By stating that C is congruent to D, we unify the G_Set Congruent relative to C and
D, and the resulting structure becomes: '

Similar{Congruent{A, B}, Congruent{C,D}}

From the resulting representation it can be easily seen that now D is known to be
similar to A.

3.4 The S-Properties

An S-Property is connected to an RST-property. For instance, S-Property
“orthogonality" is linked to RST-property "“parallelism”, i.e. it is a relationship
between two G_Sets. Therefore, if we know that rl is parallel to r2, and r3 is
orthogonal to r4, the resulting structure can be represented as:

Orthogonal[Parallel{r1, r2}, Parallel{ }] = Orthogonal[Parallel{r3}, Parallel{r4 }]
When we now state that r3 is orthogonal to rl, the resulting structure becomes:
Orthogonal[Parallel{r1, r2, r4}, Parallel{r3 }]

The system therefore has "discovered" that r4 is parallel to r2.

3.5 Sum and product of geometric Objects

Another class of relations is relative to the sum of certain properties (e.g. length), and
'to their product (e.g. area). Again, our approach is based on sets, since we never make
use of numerical coordinates. However, nested relations (like in the case of segments
A, B, C, D, E with A=B+C and C=D+E) can be expensive if treated in a
straightforward way, requiring costly exploration of tree structures. We decided to
implement a system that allows a more efficient representation and identification.
G_Objects are associated to a unique ID, which is obtained setting a single bit in a
field of many zeros. The field must contain at least as many bits, as many objects are
present, and therefore can be rather long. In our example,

A {00001}
B {00010}
C {00100}
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D {01000}
E {10000}

The bit sequences can be represented in a more compact form as integer numbers:

A {1}, B {2}, C {4}, D {8}, E {16}. Of course we need very long integers, but this is
not a problem since they can be simulated by hand, or one can use special Java classes
‘from the package Java.math.

Now, each G_Object has at least one representation, but can have more than one of
them. For instance, since A=B+C we choose to associate to A two representations:

A=B+C => A {00001, 00110} => A {1, 6}

The second representation shows the sum. When we discover that C=D+E, we update
the representation of C, which becomes :

C=D+E => C {00100, 11000} => C {4, 24}

and scan all the available representations of other elements. In particular, since
A=B+C we want to introduce an additional representation of A as A=B+D+E.

A{00001, 00110, 11010} =>A(1, 6, 26}

Recognizing that the bit sequences can be mapped into integers, all operations

become quicker and easier than one might think. In fact, when we know that A=B+C

and we want to express that C=D+E (and therefore A=B+D+E), all we need to do is:

- verify that a possible representation of A contains C, which is easy and quick
since the answer is true if the bitwise operation (A/x) AND r(C/C) gives r(C/C);

- subtract r(C/C) from R(A/x), and add to the result r(C/D+E).

Here A/x means some representation of A, C/C means the basic representation of C

and C/D+E means the representation of C as sum of D+E. In our example the steps

are:

- 6 AND 4 = 4 (arepresentation of A contains C)

- Build a new representation of A as 6-4+24=26, which is what we expected.

The representation can be updated as soon as the new information is available (eager
approach) or when it is needed (lazy approach). We are still in the process of
evaluating which solution is more efficient for our needs.

" A problem arises when one wants to sum two (or more) occurrences of the same
object, since this would break the convention that sequences containing one single
non-zero bit are to be interpreted as basic elements. For instance, if we tried to assert
that A=C+C we would end in trouble, because C+C yields the basic representation of
D (4+4=8). We fix this by associating a flag to each basic representation, signaling
that the representation is actually basic, or that it has to be considered as composite.
When we detect a collision (i.e. the result of a sum hits an already existing basic
representation), we rearrange the representations so as to leave space to the non-basic
representation and we use a slightly modified algorithm and take multeplicity into
account.

The same apparatus can be extended to treat products among G_Objects.
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3.6 The Theorems

The basic theorems needed (e.g. angle-side-angle) are explicitly coded into routines
that receive as input some G_Object. Preconditions of the theorem are evaluated on
the G_Objects, and if they are satisfied the consequences (postconditions) of the
theorem aie applied to the elements. N

In the first version of our system, the program applies the theorem suggested by the
student. If the preconditions are false, the "move" is rejected and the student is
warned, otherwise the postconditions modify the internal data structure, i.e. enrich the
knowledge about the problem.

In the second version, the program takes the initiative of trying to apply the known
theorems to the available elements, and iterates till either the thesis has been proved
or a fixed point is reached (i.e. application of known theorems does not produce
changes in the data structure).

Which theorems should be implemented? A critical balance must be achieved
between a large number of specialized theorems (which might require fewer
iterations, but in each iteration one would have to test many theorems) and a small
number of general theorem (less powerful, but with quicker iterations). We think the
answer should be in the hand of the final user. In fact, by using specialized theorems
that are not known to the student, the system might well find a proof, but the proof
would not be understandable for the student. On the other hand, too little knowledge
of basic theorems would (in the best case) lead to long and boring demonstrations. So
we believe that the student (or the teacher) should have some degree of freedom in
deciding which theorems to "enable" as possible building blocks for the
demonstration.

Moreover, during the automatic discovery process the system will in general prove a
set of accessory facts, which are not relevant for reaching the thesis. A backward
inspection from the thesis toward the hypothesis will allow dropping the unneeded
assertions, producing a cleaner proof.

4. Conclusions

We tried a preliminary version of the prover, which was indeed able to find the
solution of some simple problem in a few seconds. The listing of the steps performed
in searching the solution was short and understandable, as we desired.

The next steps are to consolidate the results, studying how the system scales with
problem complexity. We also intend to get a friendlier user interface. Finally we hope
to test soon the program "on the field" by putting it to work in a classroom.

As we mentioned earlier, the third phase also contemplates the integration of a natural
language engine for starting from the written problem rather than from its graphical
representation.

As a final remark, we remember that our final goal was not to produce a more
efficient theorem prover, but a more useful one. We do not need a tool that is able to
discover new theorems in geometry, but rather an instrument which is innovative in
the use of computers in a classroom, and most importantly actually usable and useful
for the students.
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VIRTUELNA SREDINA ZA RESAVANJE
GEOMETRIJSKIH PROBLEMA U RAVNI

Marko Ronketi

Interesovanje za koriS¢enje raCunara u didakticke svrhe potie joS od
diskusija sa Markom Jaricem, kada smo razmatrali projekt pisanja interaktivne
knjige za proucCavarje neperiodi¢nih struktura i kvazikristala. Realizaciju
poduhvata nikada nismo zapoc€eli (Zivot je komplikovan), medutim nekoliko
godina kasnije, kada je Marko ve¢ preminuo, pokrenuo sam projekt koriSéenja
raCunara za ulenje elementarnih pojmova geometrije. Na neki nain ovaj je
rad inspirisan davnim diskusijama koje smo imali u Santa Kruzu.
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Ha nacnoenoj ciupanu "®POHTA, 1970. cooune
On the cover page of "FRONT", 1970.

147

R\




Y opywiney tipeoceonuxa Tuitia 1970. 2o0une
In the company of President Tito, 1970.
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T'osop ucitpeo cumansuje "Mapwan Tuiio", 1990. cooune,
3a 20). coouwrsuyy maiiype
Addressing the Academy "Marshal Tito" in 1990, for the 20th high school reunion
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Lpkea u ypreenu yentiap "Riverside" (decno) u I'paniios I pot6 (1eco) v Ebyjopry. Hza
I paniiosoe epoda je cuityoentiicku oom "International House" y kome je Mapio scuseo,

a eope aeso y tosaounu je "City College of New York" y kome je ciiiyoupao 1974-1978.
Riverside Church and the Interchurch Center (right) and Grant's Tomb (left) in NYC. Behind
the Tomb is "International House" in which Marko lived, and back in the upper left is "City
College of New York" in which Marko studied in 1974-1978.

C ooopane Mapkoeoe ooktiopatia, nosemopa 1977. 2ooune. Jleso na cuut je iadaursie
Jyeocnosencku cidyoentd, a cadaursi osnatiu ¢usuvap, I'opan Cervanosuh (cueu u paou v
ITCP y Tpcuiy). ¥V Cpeounu je Ciienitia Baoua, wosnaitiu unoujcxu gpusuuap.

Thesis defense, November 1977. To the left is Goran Senjanovic, another Yugoslavian student
at CCNY at the time (today at ICTP in Trieste). In the Middle is Spenta Wadia, a noted Indian
physicist.
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IIpocaasa poherva cuna Anexcanopa Llloxopya 1976. 2odune y citiyoeniiickom oomy. V'
ipsom pedy: Muausoj benuh, I'opan Cervanosuh, Kemwko Anitiynosuh, Anexcanoap
[loxopay u Crasuya Japuh — iipsa Maproesa cyiipyea. Cede: Paomuna Jesuyxu u [lanuya

Cemanosuh. /lesojuuya je Hatiawa, 'opanosa u /lanuuuna hepra. Cnuxao Anituan Jesuyxu.

Birth celebration of A. Sokorac's son, 1976 in 1. House. In the first row: M. Beli¢, G.
Senjanovic, Z. Antunovi¢, A. Sokorac i S. Jarié — the first wife of Marko. Sitting: R. Jevicki

and D. Senjanovi¢. Little girl is Natasa, Goran's daughter. Picture taken by A. Jevicki

Tpu upujaitiesva jour 00 ciityouja y beocpady u Fbyjopxy, y kuneckom pecitiopamy y
College Station-y, Texcac, 1990. coouna. Jleso: Anitian Jesuyxu, upoghecop na Bpayn
Yrusepsutieuty, y cpeounu. Munueoj benuh, ipoghecop y Uncituiiyiay 3a ¢pusuxy,
FBeoepao.

Three friends since the student days in Belgrade and NYC, in the Chinese restaurant in
College Station, TX, 1990. Left: Antal Jevicki, Professor at Brown University, in the
middle: Milivoj Beli¢, Professor at the Institute of Physics, Belgrade.
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CITY OF SAN FRANCISCO MARATHON
July 1, 1990

—SPORNeRMOT0-—

Ha yumwy mapaitioncke iipre y Can @panyucky, 1990. cooune
At the finish of the San Francisco Marathon, 1990.
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‘

Ottopasaxk iiocne iipse oiiepayuje, y majuyu Ynueepsuiieiia ,, Huxonra Tecaa*,
Knun, 1996. 2o0une
Recovery after the first operation, in the T-shirit of the University ,, Nikola Tesla ",
Knin, 1996.

Ca cunom Bojunom, 1996. cooune
With son Vojin, 1996.
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