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Nanotubes have become one of the most attractive subjects in solid state physics owing to
their potential applications in nanotechnology. Due to their emphasized symmetry, the group
theory appears as one of the important tools in theoretical investigations of nanotubes. Here
we present a short review of the basic symmetry methods in the physics of nanotubes.
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During my studies in early seventies at the Faculty
of Physics in Belgrade Marko Jari¢ was one of the
older colleagues. Whenever something seemed diffi-
cult to understand he was the person to ask for help.
His influence on the Belgrade school of physics con-
tinued after he went to USA. In particular, his work
and results in the applications of the symmetry in
physics inevitably increased the interest for the sub-
Jject here. This paper is a compilation of some of our
recent results in symmetry of nanotubes. Section
IV is connected to the Marko’s research of Molien
functions'. (M.D.)

I. INTRODUCTION

The single-wall carbon nanotubes (SWCT) are quasi
1D cylindrical structures®*, which can be imagined as
rolled-up cylinders of the 2D honeycomb lattice of the
single atomic layer of crystalline graphite. Frequently,
several single-wall tubes are coaxially arranged, making
multi-wall nanotubes. Since their diameters are small
(down to 0.7nm) in comparison to lengths (up to tens
of um), the theoretical model of the extended (i.e. in-
finite, and hence without caps at the ends) nanotube is
well justified. After the discovery of carbon nanotubes,
a variety of tubular quasi 1D crystals with different con-
stituents, but with similar geometry have been reported:
BN, B:C,N,, MoS,;, WS,, etc.

The pronounced symmetry of nanotubes is obviously
relevant to both the deep insight into the physical prop-
erties (quantum numbers, selection rules, optical ac-
tivity, conducting properties, etc.) and easier calcula-
tions. Therefore, the symmetry studies have accompa-
nied the research of SWCT from their discovery. They
started by the classification of the graphene tubes ac-
cording to the fivefold, threefold or twofold axis of the
related Cgo molecule®, and gave just a part of their point
group symmetry. The translational periodicity was dis-
cussed in context of the nanotube metallic properties®.
More recently, the helical and rotational symmetries were

found”8: the screw axis was characterized in terms of the
tube parameters, as well as the order of the principle ro-
tational axis®. This task has been completed recently®!9;
the full geometric symmetry of the extended single-wall
nanotubes has been described by the line groups.

On the other hand, the symmetries of neither the
double- and multi-wall tubes nor of the tubes with dif-
ferent elements have ever been seriously studied, despite
their importance for applications in nanodevices. Here
we present the exhaustive list of symmetries of such
tubes.

In Section II a reminder on the line groups is given.
Then, in Section III the line groups of nanotubes are
derived: the familiar symmetries of the original honey-
comb lattice are transferred into the tubular geometry
and those which remain symmetries of the rolled up lat-
tice form the corresponding line group of the SWCT.
Besides the rotational, translational and helical symme-
tries (usually used in literature), the horizontal U axes
and, for the zig-zag and the armchair tubes, the mirror-
and glide-planes are also present. This concept is easily
generalized to other types of the single wall tubes. The
symmetry groups of multi-wall carbon nanotubes (these
are either line groups or axial point groups) are studied
in Subsection IIIC. Note that among them are also the
tubes not translationally periodic.

Many of the physical properties of nanctubes are de-
termined by their symmetry. Firstly, there are properties
characterized by the second rank tensors; these tensors
have already been found'!, and a typical study of this
type'® yields exaustive classification of different types of
optical activity of nanotubes, with the optic axes and
the corresponding examples. Also, the assignation of the
tight-binding electronic bands by the symmetry based
quantum numbers has been performed!?. The general
forms of the potentials for various problems in nanotube
physics are derived in Section IV. They are applied in
discussion of the relative positions of the components in
the multi-wall tubes, and the structure of the local cur-
rent density.
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II. LINE GROUPS

The line groups!3'* contain all the symmetries of the

systems periodical in one direction and usually are used
in the context of stereoregular polymers and quasi-1D
subsystems of 3D crystals. It immediately follows that,
being periodic along its axis, any extended single-wall
nanotube has the symmetry described by one of the line
groups.

All line group transformations leave the tube axis (z-
axis, by convention) invariant. Consequently, such a
transformation (P|t) (Koster-Seitz symbol) is some point
group operation P preserving the z-axis, followed by the
translation for ¢ along the z-axis. Action on the point
r = (z,y, z) gives (P|t)r = (z',y’, 2') with

z' = Proz + Py, 2 =Poaz¥i;

1)

Here, P;j are elements of the 3 x 3 matrix of P in the
Cartesian coordinates. Those elements coupling z to the
other axes vanish; such point operations are called axial
and they form seven types of the axial point groups'®:
Chn, S2n, Can, Chvy Dp, Dng, Das, wheren = 1,2,...
is the order of the principle rotational axis.

There are infinitely many line groups, since there is
no crystallographic restriction on the order of the princi-
ple axis, and they are classified within 13 families (Table
I). Each line group is a product L = ZP of one ax-
ial point group P and one infinite cyclic group Z of the
generalized translations (screw-axis Ty, pure translations
T = T?, or glide plane T, generated by the transforma-
tions (I|a), (C7|%a) and (c|3), respectively'S). Thus,
to determine the full symmetry of a nanotube, both of
these factors (having only the identical transformation in
common) should be found. The point factor P should be
distinguished from the isogonal point group P; of the line
group'4: only for the symorphic groups, when Z = T,
these groups are equal; otherwise P; is not a subgroup
of L. Due to the convention'®, 27/q is the minimal angle
of rotation performed by the elements of the line group
(if the screw axis is nontrivial, it is followed by some frac-
tional translation), as well as by its isogonal point group.

The easiest way to determine the line group L of a sys-
tem is to find firstly the subgroup L(), containing all the
translations and the rotations around the principle axis
(including the ones followed by fractional translations).
Having the same screw axis (T is a special case) as L,
and the same order n of the principle axis, this subgroup
LM =T7C,, is the maximal subgroup from the first line
group family. Then the symmetries complementing L(!)
to L should be looked for. To complete Z, it should be
checked if there is a vertical glide plane. Also, C,, is
to be complemented to P by eventual additional point
group generators; at most two of them are to be chosen
among the mirror planes, horizontal rotational axes of
order two or rotoreflection axis (refining pure rotations
that are already encountered in C,,).

y' =Pz + Py,

TABLE I: Line groups. For each family of the line
groups the international symbol, different factorizations,
the maximal first family subgroup and isogonal point
group Py, are presented (n is the order of the princi-
ple rotational axis of P;). Here, T.4 denotes the glide
plane bisecting the angle between vertical mirror planes
in P. For the groups of the families 1 and 5, q is multiple
of n (p from the international symbol is function of n, ¢
andr).

International symbol Factorizations LD Py

n even n odd
1 Lg, T;®Cn T;®Cn Cq
2 L(2n) La T A Saa T®Cn Sia
3 L(2n) Ln/m T A Cnan T®Cn Can
4 L(2n),./m :‘;‘“(5:;“ T;ncn C‘!nh

3aS2n

5 L2  1g,2 T, AD. T ®C. D,
6 Lnmm Lnm A T®Ca Chnv
7 Lncc Lnc Ch AT, T®Cn Cqny
8 . L(2n),mc g:;?\?;.:: Tin ® Cn Cany
9 L(Q_ﬁ)2m Lam ':::\UD‘.‘J T®Cn Dnd
10 L(2n)2¢c Lac TcSan = TeaDn T®Ca  Dpg
11 Ln/mmm L(2n)2m 1 p"* T®Cn Dna

TcCar =TcDn T® Cn Dna

TiaDar=T3,D 1
-%-:_D::._.T:i)_:‘ Tz.;@Cn Dzna

12 Ln/mcc  L(2n)2c
13 L(2n)n /mem

III. SYMMETRY OF NANOTUBES
A Single-wall carbon nanotubes

Elementary cell of the hexagonal honeycomb lattice
(Fig. 1) is formed by the vectors @, and @» of the length
ag = 2.4614; within its area S, = v/3/2a3 there are two
carbon atoms at positions (@ + @;)/3 and 2(&, + d2)/3.
The single-wall nanotube (n,,n2) is formed when the
honeycomb lattice is rolled up in such a way that the
chiral vector &€ = n,d; + n2d; becomes the circumference
of the tube (its end and origin match). The tubes (n,,0)
and (ny,n;) are called zig-zag (£) and armchair (A), re-
spectively, while the others are known as the chiral (C)
ones. The chiral angle 6 of the nanotube is the angle be-
tween the chiral vector ¢ and the zig-zag direction @;. All
the tubes are encountered for 0 < 6 < #/3; in fact, for
the Z and the A nanotubes 8 equals 0 and /6, respec-
tively, and between these chiralities lay chiral vectors of
all the C nanotubes with n; > ng > 0 (the tubes (nq,n,),
with /6 < 8 < m/3, are their optical isomers).

There are n = GCD(n,,n2) (the greatest common di-
visor) honeycomb lattice points laying on the chiral vec-
tor. The translations for sé/n in the chiral direction, on
the tube appear as the rotations for 2s7/n (s =0,1,...)
around the tube axis. Thus, the principal axis of order n
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is a subgroup of the full symmetry of the tube (n,,n3):

n = GCD(n;,n3). (2)

Cn,

Obviously, n = n, for the Z (n;,0) and the A (ny,n;)
nanotubes.

S, -
I

0

&

FIG. 1: Symmetries of the honeycomb lattice. For the C (8,6), Z (6,0) and A (6,6) tubes the chiral vectors
¢ are depicted by the arrows. The U and U’ axes pass through the circles (perpendicular to the honeycomb). In the
Z and A case, the bold lines o, and o', represent the vertical mirror and glide planes of the lattice, being orthogonal
to C; the planes parallel to € are denoted as o), and o}; U is the intersection of the mirror planes, and U’ of the glide

planes.

To the primitive translation of the tube corresponds
the vector @ = a,a; + @23, in the honeycomb lattice, be-
ing the minimal one among the lattice vectors orthogonal
to & Therefore, a; and a; are coprimes, yielding

- 2n, +ny _ 2ny +ng
a=- ‘;R 'al + ‘nR 202, (38.)
\/3(”51 + nz +ningy)
= |G} = g, 3b
a=a T, ()

with R = 3 if (ny — n2)/3n is integer and R = 1 oth-
erwise. For the Z and the A tubes a = v/3a¢ and
a = aq, respectively. The elementary cell of the tube
is the cylinder of the height a and area S; = a|c]; it con-
tains S;/S, = 2(n}+n3+nin2)/nR elementary graphene
cells®. So, the translational group T of the nanotube is
composed of the elements (I|ta), t = 0,%1,...

The encountered symmetries T and C,, originate from
the honeycomb lattice translations: on the folded lat-
tice the translations along the chiral vector become pure
rotations, whereas those along @ remain pure transla-
tions. These elements generate the whole nanotube from
the sector of angle 27/n of the elementary cell, with
2(n} + n3 + nyn2)/n>R elementary graphene cells. This
number is always greater then 1, pointing out that not
all of the honeycomb lattice translations are takén into
account. The missing translations are neither parallel
with nor orthogonal to & on the rolled up sheet they are
manifested as rotations (for the fraction of 27 /n) com-
bined with translations (for the fractions of a), yielding
the screw axis of the nanotube. Their generator (C} |53a)

corresponds to the vector 7 = rf + n% of the honey-

comb lattice, which, together with the encountered trans-
lations, generates the whole honeycomb lattice. Thus, 7

can be chosen to form the elementary honeycomb cell
together with the minimal lattice vector ¢/n along the
chiral direction. The honeycomb cell area S; must be
the product of |¢]/n and the length na/q of the projec-
tion of Z onto @: a|é]/q = v3a3/2. This gives the order ¢
of the screw axis. Finally, r is found from the condition
that the projections of Z on @, and @, are coprimes. This
completely determines the screw axis:

n} + ning + n}

Z=T; =" TOLATH (4a)
' o e
ez 35y n(ny + 2nq) B (=m , (4b)
n qRm ny n

where Fr[z] = z — [z] is the fractional part of the rational
number z, and ¢(m) is the Euler function, giving the
number of coprimes less then m. In particular, for both
the Z (n,0) and the A (n,n) tubes ¢ =2n and r = 1,
i.e. Z = T},. Note that g is an even multiple of n. It is
equal to the number of graphene cells in the elementary
cell of the tube S;/S;. Therefore, g/n, the number of
graphene cells in a sector, is always greater than 1; this
means that all the single-wall tubes have nonsymorphic
symmetry groups.

To summarize, the translational symmetry of the hon-
eycomb lattice appears as the first family subgroup

(52)

LM = T;C, = Lgp,
R (222tm)e(1E"2) -1, _
p=gFr "__( nR ) qg—n2 (5b)

2ny +no

of symmetries of the nanotube, with q and r given by (4).
Its elements (C7*Cy |t 2a) (¢ = 0,%1,...,3=0,...,n-1)
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generate the whole nanotube from any adjacent pair of
nanotube atoms. The group L(!) contains all the symme-
tries previously considered in the literature>”®4. Note
that the screw axis used here is somewhat different frow
the previously reported ones, due to the convention'®.
With this convention 2w/q is the minimal rotation in the
group (followed by some fractional translation), provid-
ing that ¢ is the order of the principle axis of the isogonal
point group. This explains why ¢ is equal to the num-
ber of graphene cells contained in the elementary cell of
the tube. Note that the translational period a and the
diameter D of the tube are determined by the symmetry
parameters ¢ and n:

_ 3q _1 Rnq
@=\azat D=7\ % i

Besides the translations, there are other symmetries
of the honeycomb lattice: (a) perpendicular rotational
axes through the centers of the hexagons (of order six),
through the carbon atoms (of order three) and through
the centers of the edges of the hexagons (of order two);
(b) six vertical mirror planes through the centers of the
hexagons formed by the atoms (or through the atoms);
(c) two types of vertical glide planes — connecting the

midpoints of the adjacent edges, and the midpoints of
the next to nearest neighboring edges of the hexagons.

Among the rotations, only those for 7, leaving invari-
ant the axis of &, i.e. the z-axis of the tube, remain
the symmetries of the rolled-up lattice. Thus, two types
of horizontal second order axes emerge as symmetries
of any nanotube (Fig. 1): U, passing through the cen-
ter of the deformed nanotube hexagons, and U’, passing
through the midpoints of the adjacent atoms. The first
of these transformations is obtained when the second one
is followed by the screw axis generator: U = (C7 I;—‘a)U "
Thus, any of them, say U, complements the principle
tube axis C, to the dihedral point group D,,. This shows
that at least the line group T7D,, (from the 5th family)
is the symmetry group of any nanotube. Note that U’
just permutes the two carbon atoms in the elementary
honeycomb cell, meaning that all the honeycomb atoms
are obtained from an arbitrary one by the translations
and the rotation U’. Analogously, the elements of the
group TjD, generate the whole nanotube from any of
its atoms. The action (1) of the group elements on the
point reoo = (po, Po,20) (cylindrical coordinates) gives
the points

Fuew = (G5 CAU™E2a)r000 = po, (~1)"0 + 202 + 2),(=1)"20 + £70), ()

(x=0,1;8=0,...,n—1; t =0,+1,...); hereafter, the
z-axis is assumed to coincide with the U-axis. Using (6),
it can be shown that the coordinates of the first atom
(positioned at (@ + &) on the honeycomb) are

D ny +ng ng—n
c 1 2 Ny 2
=(=,27 ———=ag). 8
Too0 (2v an ) ,ﬁﬂql 00) ()

Substituting these values in (7), the coordinates of all
other atoms are obtained.

Rolling-up deforms any plane perpendicular to the
graphene sheet, unless it is either parallel with  (then it
becomes the horizontal plane) or orthogonal onto & (giv-
ing the vertical plane). Thus, only the tubes with the
chiral vectors being parallel or orthogonal to the enu-
merated mirror and glide planes possess additional sym-
metries of these types. The Z and A tubes are immedi-
ately singled out by simple inspection. Precisely, only in
these caSes the chiral vector is in a perpendicular mirror
plane; when the sheet is rolled up, this plane becomes
the horizontal mirror plane oy of the corresponding nan-
otubes. Enlarging the previously found point symmetry
group D, by oj, the point group D,4 of the Z and A
tubes is obtained. Finally, taking into account the gen-
eralized translations (4), the full symmetry groups of the

single-wall nanotubes are:
Lc = T;D, = Lgp22,

Lza = T5,Dpa = L2n,/mem,

P =D, (9)
Daph- (10)

The line group T}, Dna (13th family) contains various
new symmetries (Fig. 2), which are the combinations of
the ones mentioned above. In fact, when o} is added
to the group T},D,, the other mirror and glide planes
parallel or orthogonal to € are automatically included in
the symmetry groups of the Z and A nanotubes. These
transformations can be seen as ogj followed by some of
the elements from T3, D,. At first, there are n vertical
mirror planes (one of them is o, = opU, and the others
are obtained by pure rotations; by the previous conven-
tion, the o), plane is the zy-coordinate plane). Also, there
are the glide planes bisecting the mirror planes (e.g. the
product (0|3) = (Canlia)oy), and the vertical rotore-
flection axis of order 2n (generated by o, U’ = Cin0},
the reflection in the o} plane, followed by the rotation
for /n).

The vectors obtained from & by the rotations from
the point symmetry group Cg, of the honeycomb lat-
tice, produce nanotubes which are essentially the same,
only viewed from the rotated coordinate systems. Never-
theless, the vertical mirror plane image of ¢ (e.g. in the
vertical plane bisecting the angle of @, and &) produces
the tube which can be considered as the same only in the
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coordinate system with the opposite sign (the coordinate
transformation involves the spatial inversion). Thus, the
tubes (n;,n,) and (n2,n,) are the optical isomers. Only
the mirror image of Z and A tube is equivalent to the
original, and these tubes have no optical isomers!®. Con-
cerning the symmetry groups, if T;C,, corresponds to

the tube (n,n2), then the group of the tube (na,n;) is

Tqi_'C,‘ (although isomorphic, these groups are equal
only when ¢ = 2n and r = 1, i.e. only for the Z and the
A tubes).

FIG. 2: Symmetries of the single-wall nanotubes: (8,6), (6,0) and (6,6). The horizontal rotational axes U
and U' are symmetries of all the tubes, while the mirror planes (o, and oy, ), the glide plane ¢!, and the rotoreflection
plane g}, are symmetries of the Z and A tubes only. The line groups are T3}, D, for (8,6), and T}, Den for the other

two tubes.

B Single-wall tubes with different elements

After the discovery of carbon nanotubes, their pre-
dicted and partly experimentally observed diverse prop-
erties attracted much interest. This induced (from 1994)
attempts to synthesize and investigate some other similar
structures. All these studies are based on the honeycomb
like lattices. Thus, the compounds with more or less sta-
ble hexagonal layered phase attracted attention: boron
and nitrite, together with the carbon atoms immediately
appeared as the candidates. Thus, several tubes of this
type, commonly denoted by B,C,N, were observed and
roughly theoretically considered: BN, BC3, BC,N (two
modifications). Here we consider symmetry groups of
these single wall tubes. They are derived with help of
the known line group of SWCT. Recently, quite different
typés of the MoS; and WS, tubes are synthesized!?.

1 BN tubes

As it can be seen from the Figure 4, the main difference
of these tubes!'8!® compared to SWCT is that U axis is
absent. Therefore, the whole tube is the two orbit system
of the index two subgroups of (9) and (10):

Le = T;Cn = Lqpy P = qu (11)

FIG. 3: Hexagonal lattice of BN (B= o, N= N).

with p, ¢, r and n same as in (9), and

Lz = T},Cny =L2n,me, P;=Capy. (12)
L4 =T3,Cun =L2ns/m, P;=Cops (13)

2 BCj tubes

Their symmetry groups are the same as those of
SWCT, but the unit length is doubled, since the trans-
lational periods®®'® of the lattice are A; = 24; @ =
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FIG. 4: Lattice BC3 (B= o, C=s).

1,2), and the BC; tube (n;,n,) has the chiral vector
nd; + naAs. The unit cell contains four honeycomb
cells, figure 4. Such cells make the same honeycomb lat-
tice as graphene, with the same symmetry elements and
the complete derivation of various expressions as for the
SWCT, except that the new periods A; are to be used
instead of @;. For C tubes there are three C-orbits and
one B-orbit, while in the case of Z and A tubes, only one
B and two C-orbits are present; in fact, since C atoms
are not in the completely special positions as in SWCT,
the mirror planes leave only one of the carbon L¢ orbits
invariant, while the remaining two become a single orbit
of L ZA-

2 BCiN tubes

There are several 2D lattices with this chemical struc-
ture. Here we consider only the two most stable2!18 con-
figurations. Despite the same chemical contents, their
geometry and the resulting symmetry is quite different.

FIG. 5: Type 1 lattice of BC,N.

The first type (Fig. 6) can be considered like the BCy
tube, with the periods A;, i.e. with the same groups as
SWCT, but with the doubled unit length. Nevertheless,

only C§ = U rotation and two vertical mirror planes are
the symmetries of the lattice. Although exactly these
yield the symmetries of the tube (thus the tube groups
are not changed), the absence of the remaining elements
means that the inequivalent tubes are contained between
the chiral angles 0 and 7/2. These two limiting directions
(n,0) and (—n, 2n) define the Z and A tubes respectively,
all the remaining ones being the C tubes. The C tubes
contain two C, one B and one N orbits; C orbits are
joined in the single C orbit of Z and A tubes.

FIG. 6: Type 2 lattice of BC,N.

The second type of the BC,N tubes has the underlying
lattice presented in Fig. 6. Obviously the elementary cell
is doubled with respect to the graphite, with the trans-
lational periods being @ and .‘Ig = 2d;. There are no
rotational symmetries of the 2D lattice, but the vertical
mirror plane o, enables to consider as inequivalent tubes
{optical isomers are assumed equivalent) only those with
the chiral angles between 0 and /2; again, the tubes
with @ = 0 are Z, these with § = 7/2 are A and the
others are C tubes. The tube (n1,n2) has the chiral vec-
tors n1 @y +2n28s, i.e. it corresponds to SWCT (ny, 2n.).
Nevertheless, their symmetry groups are different, since
no U-axis and no translations with an odd ffg-component
remain in the BC,N tube symmetry group. Thus only
the halving subgroup of the first family subgroup (5) of
the corresponding (n1,2n2) SWCT is the final symmetry
group in the C case {of course, all the parameters g, r, n,
p etc. are given by the corresponding SWCT expressions
with ng substituted by 2n,). It can be shown?? that this
halving subgroup is:

if na/n even:
Tr/2(11l0<1 G/2JC" =L(g/2)p (mod a2 A=a

q
13/ odd and "5 0 /m e

n)~1 m n
PP med 3/ = L, w20

. R=3 and n,/n even, or
if na/n odd and =1 a.nd‘ru/n odd

Tgp/n)-l (mod QG/Tl)C"/2 = LQp/Z: A=2a
(14)
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the resulting translational period A is also given, while
R, ¢, n, r and a correspond to SWCT (n;,2n,). For
the achiral tubes these halving subgroups reduce to the
symorphic groups, which are to be completed by o, for
Z, and oy for A tubes. The Z tubes satisfy the first
condition, and the addition of o, gives:

Lz =TC,, =Lnmm,Lnm A=a. (15)
Analogously, in the A case (—n,n) the first possibility of
(14) is realized; together with the horizontal mirror plane
this gives

L4 =TCus =L(2n),Ln/m, A=a. (16)
Note that the tubes (2n,n), corresponding to A SWCT,
satisfy the second condition of (14), with the group L¢ =
T3,Cn = Lgs. There are two C orbits, one B orbit and
one N orbit independently of the chiral vector.

C Double- and multi-wall nanotubes

The symmetry of a multi-wall nanotube can be found
now as the intersection of the symmetry groups of its
single-wall constituents. This task will be considered for
the double-wall tubes at first, and then the results are
straightforwardly generalized to the multi-wall ones. The
intersection of the line groups, L = ZP and L' = Z'P’
has the form L, = Z,(P N P’). Thus, the intersection
of the point groups is looked for independently of the
generalized translations.

As it has been derived in (2), the tubes (ny,n,)
and (n},n5) are invariant under the rotations around
their axes for the multiples of angles 2x/n and 27 /n’
(n = GCD(ny,n,), n' = GCD(n},n})), respectively.
The tube composed of these coaxially arranged compo-
nents is invariant under the rotation for 2w /N, which is
the minimal common rotation of the components, and
its multiples. Thus, the principle axis subgroup of the
double-wall nanotube is Cy, with N = GCD(n,n’) =
GCD(n,,n2,n},n%). The horizontal second order rota-
tional axis U (and U’) is also the symmetry of all single-
wall nanotubes. Nevertheless, such an axis remains the
symmetry of the composite tube only if it is common
to all of the components, and then the point symmetry
is Dy. Obviously, if a nanotube contains at least one
chiral component, then Dy is its maximal point symme-
try. Only the tubes composed exclusively of the Z and A
single-wall components may have additional mirror and
glide planes, as well as the rotoreflectional axis. Analo-
gously to the horizontal axis, these are the symmetries
of the whole tube only if they are common to all of the
components (the rotoreflectional axis appears only if the
horizontal planes o} coincide).

After the point symmetries are completely determined,
there remauns the more difficult study of the generalized
translational factor Z,. At first, note that it may be

TABLE II: Symmetry of the multi-wall Z and
A carbon tubes. For the periodic tubes, the line
groups (and families) and the isogonal groups are in
the "odd” columns if all the ratios n/N, n’/N, ... are
odd, and in the "even” columns otherwise. The point
groups of the tubes with both Z and A components
is in the last column. In the first column the relative
positions of the component tubes are characterized by
the coinciding symmetry elements (beside the common
principle axis in the general position). Here, (U,U")
denotes the horizontal axis, which is U-axis in some of
the constituents, and U’'-axis in the remaining ones (to
exclude the additional mirror or glide planes). Also,
(on,0}) is the plane being op in some of constituents
(with even n, necessarily), and o} in the remaining
tubes; in the incommensurate case, the same groups are
obtained when o}, planes are in common.

Relative Line group Isogonal group PG
position ”0dd” "Even” "0dd” "Even”
General T;NCN (1) TCN (1) CQN CN CN
o TinCwna (4) TCwya (3) Cann Cwna Cwa
ay TinCnv (8) TCwav (6) Cane Cwnuv Cwu
0y  TinCwny (8) TcCwny (7) Canw Cnw Cw
(U,U') TixDnx (5) TDw (5) D2y Dy Dy
on,0v  TinDwa (13) TDwa (11) Dava Dwa Dwa
on,0y  TinDwa (13) TcCwna (12) Dava Dwa Cwa
(on,0h) TinCwa (4) TSaw (2) Cava  Sav Saw
(oh,0}), Ov T;NDNA (13) TDwna (9) Da2wna Dna Dpa
(oh,04), 0% TinDwan (13) T.San (10) Dows Dwa  Saw

completely absent. Suppose that a double-wall tube has
the translational period A. If the translational periods
of its constituents are a and a’, then A is obviously the
minimal distance being a multiple both of a and of a’:
A = aa = o’a’, where a and o’ are positive coprimes (to
assure minimality). Thus, the double-wall tube is trans-
lationally periodic if and only if the translational periods
of its constituents are commensurate, i.e. only when a’/a
is rational. On the contrary, if a’/a is an irrational num-
ber, the composed tube is not translationally periodic,
and Z, is trivial (identical transformation only); the to-
tal symmetry reduces to the already found point group.
In the commensurate case it remains to examine if the
translational group can be refined by a screw axis, com-
mon to all of the single-wall components. The task is
to determine the screw axis generator (Cg]F ) with max-
imal @, appearing in the both groups L = T7;C, and
L= T;,' C,. Thus, one is looking for the values of Q, R
and F (in accordance with the convention'®), such that
there exist integers ¢, s, ¢ and s’ (enumerating the ele-

ments of L and L') satisfying
(CEIF) = (CTCalt)) = (Cp¥Crule ) (17)

with F = XA, f = 2a, and ' = Za’. Obviously, the
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fractional translation F is the multiple F = tF* of the
minimal common fractional translation F'*, implying A =
%tF *. Analogously to A, the translation F* is found as
the minimal distance being the multiple both of f and
f'; thus it is given by the unique solution in the coprimes
¢ and ¢’ of the equation F* = ¢f = ¢'f’. Since the
translational periods of the single-wall components are
multiples of their fractional translations, A is the multiple
of F*,i.e. A=®F*. With the help of number theory, it
can be shown that only the tubes with the same R may

be commensurate; then a = ¢’ = ‘/CCW%;:_.«TT‘Y’ o =
¢ =/ ceores7my and @ = \/ 2. Thus, Q = &N/,

and the minimal 7 is looked for to provide the finest screw
axis. The translational part of (17) immediately shows
that ¢ = 7o’ and ¢ = ra. With these values substituted,
the rotational part of (17) gives:

C8 =C[™7Cy = CL*"CL. (18)

The minimal  for which this equation is solvable in s
and ¢ is 7 = /GCD(ra% - r'a’ &, ®). Finally, Q =
NGCD(ra%} —r'a' %,/ ,‘H"—,), and R is easily found from
the first equation (18).

All these results are immediately generalized to the
multi-wall tubes. Note that the generalized translations
and the principle rotational axis of the multi-wall nan-
otube depend only on the types of their single-wall com-
ponents. On the contrary, the appearance of the mirror
and glide planes and the horizontal axes in the common
symmetry group is additionally determined by the rela-
tive positions of these components.

It remains to give the summary of the symmetry
groups of the multi-wall tubes. If at least one of the
single-wall constituents is chiral, then in the commensu-
rate case there are two possibilities: T§C, correspond-
ing to the general mutual position, and TADy in the spe-
cial mutual positions with the common U-axis. Analo-
gously, the tube built of the incommensurate components
have the symmetry described by the point groups Cn or
Dpy. If the nanotube is built of the Z and A single-wall
tubes (n,0) (or (n,n)), (n',0) (or (n’,n’)), ..., the order
of the principle rotational axis is N = GCD(n,n’,...).
If the tube contains at least one single-wall tube of both
types, no translational periodicity appears and its sym-
metry s described by the point group (Tab. II). On
the other hand, for the tube composed of the compo-
nents of the same type (either Z or A), the translation
period is equal to that of the components. Two different
situations may occur: if all the integers n/N, n'/N ...
are odd ("odd” case), the translations are refined by the

screw axis T}y ; otherwise, if at least one of these inte-
gers is even ("even” case), no screw axis emerges. The
analysis of the special arrangements of the constituents
with common horizontal axes, mirror or glide planes, in-
creasing the symmetry of the total system is summa-
rized in Table II. Note that according to the various
arrangements of the components, any of the line and ax-
ial point groups may be the resulting symmetry for the
commensurate and incommensurate components, respec-
tively. Some examples are given in the next section.

IV. POTENTIALS IN NANOTUBES

Potentials produced by the single-wall nanotube must
be invariant under the transformations of its symmetry
group L. This means that the potential V(r) is a spatial
function obeying

V(r) = V((PJt)"'r), (19)

for each element (P|t) of L acting according to (1). In the
forthcoming analysis this property is used to obtain quite
restrictive conditions on the form of V. Since the invari-
ance under the generators implies the invariance under
the whole group, the relation (19) should be inspected
only for the generators of L, to find the independent
conditions. The single-wall nanotubes will be treated
explicitly, but hints for generalization to the multi-wall
ones will be given, too.

The translational and rotational symmetries of the
tube, generated by (I|e) and C,, immediately enable one
to get the Fourier expansion in the cylindrical coordinates
@ and z:

oo

Y allpentee e (20)
K,M=-oc0

V()=

To incorporate the whole subgroup L(!), the screw axis
generator (C7|%a) should be employed. The relation (19)
becomes V' (p, ¢, 2) = V(p, p—2r, 2~ 2a). When applied
to (20), this helical group restricts the sum only to the
terms with Mr + K being the multiple of ¢/n:

oo

V(r) = b3

K. M=—-oo
Mr=—K med(%)

a:(p)elnMweﬂsz_ (21)

For the Z and the A tubes ¢ = 2n and r = 1, and
the restriction M = —K mod(2) reduces the sum to the
terms with K and M of the same parity:

oo oo
V)= 3 wileMree e 3T el(p)erMneei s, (22)
= M K=—oco M, K=—oo

odd

even
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Additional symmetries are manifested as relations between the coefficients a¥(p) in (21). The inva.riancg under the
horizontal U-axis reads V (p, ¢, z) = V(p, —p, —z), giving a¥(p) = aZ¥(p); thus, the most general potential of the C

single-wall nanotube is:

oo

Vo= Y aeEKeendo+ Yo uto)coZEKs - niy) (23)

Mr=K mod(1)

As for the Z and A tubes, the potential (22) is invariant under o, and U. For further purposes o, is considered
first: manifesting as the requirement V(p, 9, z) = V(p, =, z), it gives w¥ = wy* and e = €, ¥, and the potential (the
most general one for the line group T}, C,,, of the 8th family) becomes:

VE= Y S ke cos(MagleR R+ > eo)cos(Mnp)er ¥, (24)

K=—co Af=10dd
odd

Km—ocao M=0
even  evem

Including U-axis as in (23), the general Z and A potential is obtained:

oo

o0

V(r) = Z wy(p) cos(2a—7er) cos(Mnyp) + Z ex(p) cos(%::Kz) cos(Mny). (25)

M K=1
odd

Note that due to the implicitly encountered o} invari-
ance, all the terms are invariant under the z-axis reversal,
in contrast to the C case.

The obtained potentials can be further specified.
When the Taylor expansion of a¥(p) is performed, the
sum of the terms with the same order in p is invariant
polynomial of the line group. Therefore, this is a poly-
nomial over the integrity basis of the line group??, with
very restricted form. As for the translationally periodic
multi-wall tubes, the method described can be applied,
with analogous results. Different situation is with the
nanotubes having incommensurate components. They
have only point group symmetries, acting on the coordi-
nates according to the homogeneous rules. Instead of the
Fourier expansions in ¢ and z, the total Taylor expansion
is considered, with terms being invariant polynomials in
all the coordinates. So, only the Molien functions® and
the integrity bases for the point groups are to be used?*.
These topics will be considered elsewhere in details, while
in the rest of the section some important implications of
the presented results will be derived. For simplicity, the
Z and A nanotubes will be considered.

The separation of the even and odd terms characterizes
the potentials (22), (24) and (25), related to the screw
axis T}, of the Z and A tubes. Beside the terms inde-
pendent of z, in the even part there are the terms with the
translational periods being fractions of a/2. The periods
of the,odd harmonics are odd fractions of the original pe-
riod a of the tube. All the terms with the periodicity of
the tube, i.e. with K = 1, have nontrivial rotational pe-
riodicity % Of course, this reveals the influence of the
helical nature of the tube to its physical properties. For
example, the constant electric field along the tube axis
breaks the z-reversal symmetries, lowering the symmetry

o =~ W 2w n' .
V= Z w,cos(:—Kzo)COs(nTv—M‘po)sm’(

M. K=1
odd

Note that the odd terms appear only in the "odd” case

M,K=0
even

group to T3, Cy,, and the caused current density is given
by (24). Therefore, either the local density variations are
only due to the harmonics with the periods being even
fractions of 2» or there are chiral current components;
this can be experimentally tested. In fact, all the terms
with M, K # 0 also give this interesting possibility.
Finally, possible relative position of the double-wall
tube consisting of Z or A components will be discussed.
Their mutual interaction can be considered as the sum of
the potentials that the atoms of the second tube ((n’,0)
or (n',n’)) experience in the field (25) produced by the.
first tube (n,0) or (n,n). The potential of the whole sec-

o n 1
ond nanotube becomes Y. Y 3" V(rs,). This sum
t=—co s=0 u=0

depends on the relative positions of the single-wall com-
ponents, which are parameterized by the angle @y and
the height zo between their U axes. With help of (7) and
(8) the potential V,»" over the single atom can be calcu-
lated. For ZA and AZ tubes, the obtained potential is
constant, i.e. independent of the relative position of the
single-wall components. This is natural consequence of
the incommensurability of the Z and A tubes. Namely,
two coaxial incommensurate helices pass through all the
possible mutual positions, independently on their ini-
tial points (the tube is considered to be long enough),
and none of their relative spatial positions is singled out.
Thus, no energy is required for relative coaxial transla-
tions and rotations of the components, and this is man-
ifested as the obtained constant potential. In the cases
of ZZ and AA tubes one finds (the constants w¥ and “r
are the values of the coefficients in the radius p = D'/2
of the second tube and N = GCD(n,n’)):

nnn’ = 2m nn’'
=)+ D e cos(TKZo) cos(—Mo)- (26)

M K=1
even

(Tab. II), with the symmetry group T4Cy in the general
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position. The minima of this potential single out the
preferred relative positions of the tubes. The importance
of such analysis stems from the expected dependence of
the properties of the tube on the relative positions of the
components, as illustrated in the discussion of the optical
activity. For further considerations some assumption on
the realistic forces between the components is needed.
Here, we only note that an absolute extremal point of the
potential is g = zp = 0, i.e. the position of coincident
U-axis of the components. Thus, the maximal symmetry
positions are preferred if the forces are attractive.

V. CONCLUDING REMARKS

All the geometrical symmetries of the nanotubes are
found. In addition to the rotations, translations and
screw-axes, observed previously, the single-wall carbon
tubes always possess horizontal rotational axes; the Z
and A ones have mirror and glide planes in addition.
Thus, their full symmetry group is TD, for the single-
wall C tubes and T3D,,, for Z and A ones. The param-
eters ¢ and r of the helical group are found in the closed
form. Since 27 /g is the angle of the minimal rotation
(combined with the fractional translation) performed by
the symmetry group, the order of the principle axis of
the isogonal group is ¢ and it is always even. Moreover,
2q is the number of the carbon atoms in the elementary
translational cell of the tube. Let us mention that the
different tubes cannot have the same symmetry param-
eters ¢, r, n and a. This profound property means that
the line group is sufficient to reconstruct the tube (as it
is demonstrated by (7)), i.e. the symmetry completely
determines the geometry and all consequent characteris-
tics of the nanotube. The symmetries of the multi-wall
tubes are quite diverse. Depending on the types of the
single-wall components and their arrangements, all the
line and axial-point groups emerge: A and Z tubes can
be combined to make a prototype for any line or axial
symmetry group. This immediately shows that the prop-
erties of nanotubes may vary greatly, depending not only
on the single-wall constituents, but also on their mutual
positions.

There are many physical properties based on symme-
try, and the presented classification of nanotubes ac-
cording to their symmetry can be widely exploited. At
first, the symmetry can be used to find good quan-
tum numbers. We begin with the single-wall nanotubes.
The translational periodicity is reflected in the conserved
quasi-momentum k, taking the values from the 1D Bril-
louin zone (—m,n], or its irreducible domain?® (0, ].
Also, the z-component of the quasi-angular momentum
m is the quantum number caused by the symmetry of
the principle rotational axis; it takes on the integer val-
ues from the interval (-3, 3], and characterizes the nan-
otube quantum states. The parity with respect to re-
versal of the z-axis, induced by the horizontal rotational

axis U, is the last quantum number common to all the
single-wall tubes. The even and the odd states with re-
spect to this parity are conventionally denoted by + and
—. For the Z and A tubes there is an additional verti-
cal mirror plane parity, introducing the quantum num-
bers A and B, to distinguish between the even and the
odd states (the parity with respect to the horizontal mir-
ror plane is dependent on the above discussed U and o,
parities, £ and A/B). Concerning the multi-wall tubes,
m is the quantum number again. Again, the z-reversal
and vertical mirror parities may appear, depending on
the concrete symmetry of the nanotube. Nevertheless,
the tubes with incommensurate components are not pe-
riodic, and in such cases the quasi-momentum k is not an
appropriate quantum number; an interesting experimen-
tal question may be whether the approach of modulated
systems can be applied to restore this quantity. The sim-
ple criterion of commensurability of the single-wall tubes

is derived: they have the same R and ;ﬁ— is an integer.
The involved symmetry parameters ¢ and n are discrete,
allowing exact experimental check of commensurability.

The enumerated quantum numbers may be used to dis-
cuss and predict many characteristics of the nanotubes,
but the most sophisticated approach to classification and
properties of different quantum states is based on the ir-
reducible representations of the corresponding line?®2”
and point groups. Let us remind that these representa-
tions are labeled by the derived quantum numbers. The
most exhaustive possible information on selection rules,
comprising the conservation of quantum numbers, for the
processes in the nanotubes has become available?® after
the full line (or point) group symmetry has been estab-
lished.

The dimension of an irreducible representation equals
the degeneracy of the corresponding energy level. For
the periodic tubes, the degeneracy of the energy bands is
at most fourfold; nevertheless, if the time reversal sym-
metry of the (spin-independent) Hamiltonian is encoun-
tered, the maximal degeneracy is eight-fold?®. Further,
the possible degeneracies are only two-, four- and eight-
fold. As for the multi-wall nanotubes with incommensu-
rate components, the dimensions of the irreducible rep-
resentations of the axial point groups are one, two and
(if the time reversal symmetry is included) four, showing
the possible degeneracies of the energy levels. Note that
the maximal of the enumerated degeneracies (eight- and
four-fold) is not possible for the tubes containing at least
one C single-wall component. Moreover, the degeneracy
of the multi-wall tube in the general position of its com-
ponent is at most two-fold, which is caused by the time
reversal symmetry exclusively.

The results of the section IV enable us to generalize
the Bloch theorem to the line group symmetries of the
single-wall nanotubes”: multiplying these invariant func-
tions by the matrix elements of the corresponding irre- _
ducible representation, all the quantum states and covari-
ant functions can be obtained. On the other hand, many
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of the nanotube properties can be understood on the ba-
sis of these potentials. The mutual independence of the
incommensurate ideal infinite coaxial tubes is an inter-
esting result, that should be understood as the weak cou-
pling in the realistic cases. Relative arrangement of two
coaxial single-wall tubes is sharp!y reflected on the tensor
properties of the tubes, as illustrated by the optical ac-
tivity!?. In this context, the discussion of the preferred
positions, being briefly described, should be important
for applications of nanotubes, as well as the proposed
possibility of the chiral currents. The fields produced by
such currents could be used for tube identification.
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SIMETRIJA NANOTUBA

M. Damnjanovié, T. Vukouvié, I. Milosevié

Zahvaljujuéi potencijalnim primenama u nanotehnologiji, nanotube su postale vrlo
atraktivni predinet istraZivanja u fizici évrstog stanja. Zbog njihove naglasene simetrije,
teorija grupe je vazno sredstvo u teorijskom ispitivanju nanotuba. U ovom radu predstavl-
jen je kratak pregled simetrijske analize fizike nanotuba.
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