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Abstract

Quasiperiodic patterns originate from multicriticality. The mechanisms for the
formation of these structures are discussed for optical devices that display
different types of nonlinearities. Numerical patterns illustrate the multiple
scale analysis predictions.

I-Introduction
This article is written to commemorate the untimely passing away of Professor Marko
Jaric, whose work on quasicrystals produced a lasting impact on the field.

The formation of optical patterns has been mainly studied in single longitudinal
mode devices with either active or passive media. In such cases, the systems may develop a
stationary transverse oscillation, leading to periodic patterns like rolls, squares and hexagons or
to a travelling transverse wave. Spatxal solitons, vortices, localized structures may also occur
and are presently extensively studied'.

Actually, most devices operate on several longitudinal modes and, consequently
display a multiconical emission of light’. The inner ring corresponds to the largest wavelength
that is the only one to be considered in the mean-field models’. (For a discussion, see Ref. [4]).
Therefore, the experimental set-up for the observation of structures predxcted within the
framework of the single-mode model reqmres some low-K filtering procedure®. But, if the
outer rings of the multiconical emission of light are not suppressed smaller transverse
wavelengths may participate in the growth of instabilities ™: It often appears that the new
patterns are no longer invariant under space translation'’, leading to two-dimensional
quasicrystals.

Quasicrystals 7 have been discovered in three-dimensional lattices by Shechtman et o
in 1984 and then extensively studied ", even recently in optics where cold atoms localize in
quasiperiodical lattices built with laser beams'.

Two-dimensional quasi-structures have been also observed: The generanon of a
twelvefold orientational order pattern was first reported by Edwards and Fauve” in a Faraday
instability experiment, where the capillary waves were excited by a two-frequency force.
Eightfold and tenfold orientational order patterns were observed in a Faraday instability in case
of a single frequency parametric excitation®”. And quite recently in optics, the group of W.
. Lange has observed both the eightfold and thetwelvefold quasrpattems on the laser light
profile in a single-feedback experiment with a sodium vapor "

The formation of these 2N-fold orientational order structures as a result of the
coexistence of N Fourier active modes was first analyzed by H. Miiller”. More precisely, two
types of nonlinear selection mechanisms were assumed, either monocritical or bicritical,
depending on the presence of one or two sets of active modes. A 2N-fold orientational order
monocritical pattern was predicted to occur when the N modes are coupled by a cubic
interaction with an appropriate Landau coefficient. Differently, the mechanism for the
formation of a bicritical pattern lies on a resonance condition that requires a magic ratio
between the two critical wavenumbers in order that the tryadic interaction between the modes
works. The formation of the twelvefold orientational order structure '**° belon%s to this case ®

These mechanisms have been discussed by us in optical systems*™"". An erghtfold
orientational order monocritical pattern was predicted to occur in case of a polarization
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instability in a rubidium vapor and a bicritical twelvefold onentatlonal order pattern was
found to occur when the input beam is circularly polarized™*. Bicritical twelvefold
orientational order patterns were also reported with a liquid crystal hgth valve'™” and a
periodic bisquare was displayed in the ring cavity with two-level atoms''. With the degenerate
optical parametric oscillator (DOPO), both monocritical and bicritical quasipatterns were
shown to occur’.

The 2N-fold orientational order patterns display quasiperiodicity because they are
built with the help of two wavenumbers: The first one is the critical wavenumber, i.e. the
radius of the circle on which the maxima are distributed in the far-field, and the second one is

. . 4 .
the chord between two adjacent maxima, associated to the vertex angle N Generally the ratio

between these two wavenumbers is irrational, leading to a quasiperiodic behaviour. The
particular case, for which the chord is equal to the radius, displays a wavenumber locking
leading to the well-known hexagonal lattice. (The cases of a single-mode or a two-mode
structure are not in discussion because they are automatically periodic in a two-dimensional
space).

There are also structures such that the 2N modes are not regularly distributed on the
circle'®. In that case there are generally at least three wavenumbers for the characterization of
the structure. If no locking mechanism occurs, then the structure will generally present chaotic
properties. (See §IIb).

In optics, multicriticality is the result of the propagation of the light beam in the free
space in between its exit from the nonlinear medium to its feedback into the medium, with the
help of one (single-feedback mirror device) or several mirrors (ring cavity device). Indeed, let
us assume that the amplitude of the signal is proportional to a Fourier mode at the exit of the

medium, &5 ei&"F. After it propagates in the free-space on the length L, the signal diffracts
iv2 12k ik F ~LK2 12k ko 7 . ,
like V72K K0T o (N0 T K0T, yp ko =|Ko| JL/2K s the fundamental
critical wavenumber, then there are an infinite number of solutions, ‘
Kn -JK(Z, +nm, )
which are alternatively associated with 2 modulational instability for even n and with a wave

oL
instability'* (modulational + Hopf bifurcation, with a period equal to = ) for odd n.

(k)

0 K% K} K2 K*
Fig.1

Therefore, in any optical device where the diffraction effects appear mainly in the free-space,
the marginal stability curve presents an infinite set of minima located at K, with a degenerate
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threshold intensity in absence of diffusion process (see Fig. 1). The multicritical patterns

originate in this multiconical emission process.

In the next sections, two different kinds of nonlinear systems are investigated: In
Section II, the monoeritical mechanism is discussed for the single-feedback mirror device
with a rubidium vapor, when the polarisation of the signal is orthogonal to the linear
polarization of the pump and for the DOPO displaying a x(z) nonlinearity. While the original
equations describing these two systems are quite different, the muliiple scale analysis gives
rise to amplitude equations with a cubic nonlinearity between the Fourier modes. The study of
these amplitude equations leads to the prediction of different quasiperiodic structures. Section
I11 treats the bicritical case. The mechanism of the formation of bisquares in the passive ring
cavity device with two-level atoms is analyzed with the help of a bicritical multiple scale
analysis. The twelvefold quasipattern that occurs in the single-feedback device, when the
rubidium gas cell is excited by a circularly polarized pump, is also analyzed.

II-Monocritical bifurcations
Let us assume Q(7,f) to be the control parameter for the considered system, and

expand it as a superposition of N Fourier modes,
2 N iK 7 - ~
0G.= SAwe 7 vee , [Kp|=ke  p=LN @
p=1

The amplitude equations for the polarization instability of a rubidium gas' and the DOPO" are
the standard equations for a supercritical bifurcation with a cubic noniinearity between the
modes,

[ o N ]
314y = wie= gl e + S Beplaf | 3
L pet |

where the coefficient p is proportional to the intensity shift from the threshold. The Landau
coefficient By, depends on the vertex angle between the two modes Ky and Kp,

Op = (Iig ,1.(1,), with 0<8<s. It has to be small compared with unity for any pair of modes, in
order that the N modes may coexist. (The condition is B<1 for N=2, but it may be more drastic

for larger N). The expression of the Landau coefficient and its law of variation as a function of
the angle 6 is determined from the equations of the system.

lla- Polarization instability case
The Landau coefficient'® obeys the quite simple law,

BOF (1 + )= (1 - ) cosR K2 cos(@)],
x x

Where  is the nonlinearity parameter. It displays deep oscillations with minima equal to 2/,
located at

8 =cos ™ (kn!K2), wherek = 0, 1, .... @)
Let us consider the case of an excitation on the defocusing side of the rubidium transition so

that the linear stability analysis provides
2 3z
For this value of the critical wavenumber, the minima of B1y, where the mode "1” is at 6=0,

1.2 1.4 3
are located at 67 = cos 1(3)5 % 613 =%, 614 = cos l(g)sn Tzr’ as shown in Fig. 2a.
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Fig. 2a

For y =7 in full line and = 2.1 in dashed line

Therefore, with such a repartition on the half circle, the other Landau coefficients
B23, P24, and B34, are also very close to zero. This leads to the prediction that eight Fourier
modes coexist on the full circle, and consequently to the formation of an eightfold orientational
order quasipattern'®. Indeed, the calculation of the free energy'® has confirmed that this
structure is the most stable in the limit for ¥>2.17.

The situation is differert for larger critical wavenumbers X, see Eq. (1): It is easy to
deduce from the variation law of the Landau coefficient with respect to 0 in Eq. (4) that the
number of zeros increases and that they are not regularly distributed on the circle. This
irregular distribution of the modes on the circle implies that the vertex angle between any two
modes is not necessary close to an angle satisfying the relation (4). Some B pts (P, £=1), can be

even greater than unity because of the steep variation of the Landau coefficient between two
extrema. For this reason, the polarization instability only generates the eightfold orientational
order quasipattern. Far enough above threshold, this structure bifurcates to a multicritical

27
pattern'®, basically composed of rhombuses with side length equal to _K_ .
0

1Ib- Dopo
In this case, the successive critical wavenumbers are K, =+/8; +nx , where 8; is the

cavity mistuning of the signal. The analytical expression* of (6) is quite complicated and is
not given here. Its angular variation law is reporied in Fig. 2b in the case of two different
critical wavenumbers Kj and K, where quasipatterns may be expected. The Landau
coefficient associated with Xj displays a plateau close to zero for a large domain of 6, as
shown by the full line of Fig. 2b, so that several regularly distributed modes may coexist; for
K¢ = K>, in dashed line, (8) exhibits sharp peaks at 8 close to 7/2. (Here the mistuning is
equal to -0.1, but the same qualitative behaviour is displayed if the mistuning has the opposite
sign). As K, increases further, the number of maxima larger than unity also increases, so that
the formation of quasipatterns becomes unlikely.
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Fig. 2b

Numerical simulations are shown in Figs. 3a-3f in the case where the threshold
intensity degeneracy is removed, due to losses during the free-space propagation of the light
beams. Therefore, for small enough intensity, only the lowest critical wavenumber is involved.

The far-field intensity in Fig. 3b displays eight peaks regularly distributed on a circle
of radius K that agrees with the prediction in Fig. 2b. The near-field intensity is composed of
octogonal cells, as seen in Fig. 3a and is clearly not invariant by translation in any direction of
the transverse plane. The quasiperiodic character of the pattern is displayed in Fig. 3¢ where
the variation of the intensity along a straight line of the plane (x,y) is drawn.

» -
y Inlid! oyl
Fig. 3a Fig. 3b Fig. 3¢
. This monoconical quasistructure becomes unstable when the input intensity increases

to twice the threshold intensity. The secondary bifurcation displays a biconical pattern
involving both Kj and K7 . Next, the biconical structure bifurcates to a monocritical structure
with K. = K> , for an input intensity about four times the threshold intensity, as shown in Figs.
3d-f. This structure remains stable for an input intensity about sixteen times the threshold one.
It is composed in the far-field of ten peaks irregularly distributed on the circle, as shown in Fig.
3e. It appears so far above threshold that the behaviour of Landau coefficient, (the dashed line
in Fig. 2b), gives only a qualitative idea of the far-field geometry. The variation of the near-
field intensity in Fig. 3d along any straigth line of the transverse plane looks chaotic, because
the critical wavenumber and two chords of different lengths are involved, (see Fig. 3f). Let us
also point out the presence of very small peaks on the inner circle of radius Kj, which are not
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visible in Fig. 3d. While passive, the corresponding modes contribute to the formation of the
structure via the cubic interaction between two modes Kz ¢andK3 , on the circle K3,

making the vertex angle close to cos™(3/4). If a far-field mask hides the small wavenumbers
centered about K, then the quasipattern in Figs. 3d-f does not emerge.

Fig. 3d Fig. 3e Fig. 3f

Actually, while monocritical, these quasistructures are reinforced due to
multicriticality. For instance, the two sets of passive modes with wavenumbers JEKI and 2 Kj

generated via the nonlinearities from {I-(l} are closely in resonance with the critical

wavenumbers K3 and Ky, respectively, when choosing a cavity mistuning of the signal §j,
small enough.

III-Bicritical bifurcations

H. Miiller” considered a mechanism involving a coupling between two sets of active
modes regularly distributed on two concentrical circles of radii equal respectively to the critical
wavenumbers K and q. First, he treated the case of eight modes on each circle: Then, the

v e i . i . = = =1 % SAl = T
triadic interaction between modes gives rise to Kj+ Ko =g with (Kl, K2)=; and

% -v2 +v2 , such that the outer set of modes is twisted by the angle % with respect to the

inner set. For twelve modes, the magic ratio can be JZ +v/3 and the outer set of modes is
twisted by the angle % . The magic ratio can be also ¥2 that only couples orthogonal modes.

In the model chosen by Miiller for the envelope equations, the quasipatterns are preferred in
presence of a coupling between the bicritical sets of modes, while squares (hexagons) prevail
when the coupling vanishes.

Here the mechanisms for the formation of two different optical bicritical structures are
analyzed and compared with those proposed by Miiller.

Illa)-Bisquares

We analyze the patterns observed in the simulations of a passive ring cavity with a
dispersive quasi-Kerr medium, illuminated by a cw red-shifted pump beam'. On the
defocusing side of the atomic resonance, the successive critical wavenumbers are close to
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K, K s 1/51( , 2K. With a low-pass filter transparent to the first three cones, biconical
patterns occur, built up with the X and ¥2K wavenumbers.

Near the onset of instability, a stable bisquare pattern spontaneously emerges from
noise, or grows from a strong initial hexagonal modulation, displaying two sets of active
orthogonal modes {Kﬁ K} that drastically change the hexagonal order corresponding to a

monocritical set of active modes. Indeed, the near-field pattern (Fig. 4a) looks like two sets of
intricated squares.

) » s

Y +

L ' A
Fig. 4b

2
The basic set presents a large modulation —Z with bright peaks separated by a secondary

Py

. 2n .
square structure of modulation X The far-field consists of two sets of four spots

distributed in quincunx, see Fig. 4b.

The weakly nonlinear analysis in the vicinity of the instability boundary was
developed in details for the case of the bisquare pattern in Ref. [11]. The stationary patterns
display amplitudes { 4; } on the inner ring that are twice larger than the amplitudes { B; } on the

outer ring, leading to the first order solution Q + Q' , with

Q= AleiK’r - AgeiKy +cc, and Q'= BleiK(x+y) + BzeiK(x—y) +c.c. 6)

The muitiple scale analysis associated to the bicritical solution (6) leads to the following set of
coupled equations for the amplitudes of the Fourier modes,

B

b3 *
~ B + AyB 2 2
iy =y +y 22 (o]l + pll) +on'BBy + (B + )
* *
A1B +A
a1y = sy HLEAR g o\l 4 ) w03 B3 + a8+ 1BaF) )

53, By = wBy +y'AA, + Bl(é’|Bl|2 + ﬂ’|32|2) + (458, + ATB )+ 25731(|Al|2 +lA2|2)
& By = uBp +y'AlA} +Bz(6’|32|2 + ﬁ'lBllz) + o’(( A?)ZBI + Afﬂ*) + x’Bz(IAll2 +|A2|2)
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In these equations, the quadratic coupling terms proportional to y and y’ describe the
resonant tryadic interaction between the two active sets {I.{, -./2-12 } , and the negative values of
8, 8', o and o' ensure the stability for positive u and p’. The comparison of the stationary
solutions of Egs. (7) with the numerical amplitudes is quite satisfying . Furthermore the study
of the behaviour of the cubic coupling coefficient f between modes {I?} shows that the angle

3 is preferred in the case of a bicritical instability, while it shifts to 3 for a monocritical

instability. This last result confirms the existence of a square structure for the biconical case
and of a hexagonal structure in the monoconical situation. Furthermore, the monoconical

1
process is unable to foresee the biconical structure because the corresponding B(E) has a large

negative value that would lead to to unstable squares.
In conclusion, although the {1—( 2K } triadic coupling is involved in the formation of

the bisquare structure, the basic symmetry of the monoconical pattern is lost. That example
illustrates the variety of biconical patterns that may resuit from the {K, -./Z_K} coupling and

shows that the symmetry of the monocritical structure is not necessarily preserved.

1IIb) Twelvefold orientational order quasipattern.

In the case of the single-feedback mirror with a rubidium cell, driven by a red-shifted
pump beam with respect to the atomic resonance line, the magic ratio for the occurrence of a
twelvefold quasipattern is almost satisfied between the two critical wavenumbers

1l ,3 S
E and -2£ , corresponding respectively to X4 and to Ko as given in Egs. (4) and (5).

Therefore, the basic mechanism of a triadic coupling between the two sets of modes associated
with the above wavenumbers should work when the device presents a Kerr- like nonlinearity.
This happens when the pump beam is circularly polarized, for instance clockwise. Then, the
nonlinear part of the refractive index of the light Q, which is proportional to the population
difference between the two lower states of the atomic transition 5S;/2 —5H /2, obeys the

equation

) R
RelLV? 0 ) , ®)

(
dtQ -—(1+I+)Q—I+, I+=10l1+

where I, is the sum of the input intensity Iy and of the intensity of the light beam reflected by

the plane mirror located at the distance L/2 from the cell exit, with reflectivity factor R.
{Absorption effects are supposed to be negligible). The equation (8) differs from the equation
for a linearly polarized pump beam, mainly by the source term, which, above threshold,
displays an electric field component with polarization orthogonal to the pump one. In the case
described by Eq. (8), the nonlinear refractive index possesses a homogeneous stationary
component proportional to the input intensity, like in Kerr media. For a monocritical
bifurcation, the hexagonal symmetry is well-known to appear, so that it is reasonable to expect
a twelvefold quasipattern when a bicritical bifurcation can occur with the condition
% ~ m . Actually, the numerical simulations display the quasipattern composed of basic
cells made of twelve peaks, as shown in Fig. 5a. The far-field displays twelve intense spots on
a circle of radius K in Fig. 5 b.

102



Fig. 5a Fig. 5b

The twelve peaks corresponding to the largest wavenumber q are so weak that they are not
visible on the figure. This feature indicates that the modes associated with the larger
wavenumber q can be treated as passive modes”. This assumption simplifies considerably the
multiple scale analysis, leading to the expansion

3 = = e
0= };Alje‘K‘f' +A2,-e'K2”' +cc ©)
j=1

where Q is the sum of two sets of modes with amplitudes {A; j,Af jand {4 j,AE j} forming
two hexagons titled by the angle /6 with

5

3
{ K11 = (K, 0), Ki2 =(-7 Km Kc), K13 = (- Ke, —‘Kc)}, (10a)

2
and

3 1 1
{K21 =(0,Kc), K22 = (—J— 3 Ke), Ky3 = (J— Ke,-5 Ke) }- (10b)

.

Losses are introduced dunng the ﬁ'ee-space propagation that amount to replacing the

diffraction operateur e’v L2k by e V2L/2K1-i0)
increases exponentially with K.

with real g, so that the threshold intensity
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The multiple scale analysis of Egs. (8) gives rise to

o 2 3 ’
9 Al = pA1l - QARAIZ - GAL Y Eﬂ(ﬂu.mnﬂf*mnl

m=1n=1

2 3
2
d1A12 = pA2 - CoA3AT —C3A12 S S B(012,mn) Amnl (11)

m=1n=1

2 13
9,413 = pAy3 - C ATJAD - Cadps 21 Elﬂ(913m1Amn32
m=in=
with the definitions (9)-(10). The equations for the other set are deduced from Egs. (11) by
1—2. Cubic terms display the interaction between two adjacent active modes, for instance
K11 and K5 that make the vertex angle /6.
The comparison between the analytical prediction for the stationary amplitudes and
the numerical simulations is displayed in Fig. 5c. Their qualitative good agreement confirms
the validity of the single active mode approximation (9).

A

0.25] -

A SR— l
0.1 .15 0.z !

Fig. 5¢

The formation of the twelvefold quasipattern was also analytically studied in Ref.
[13]. The authors use a modal decomposition based on a von Neumann-Karmann expansion
and derive some amplitude equations for two sets of active modes using a perturbation
method. This method does not take any solvability condition into account. Therefore, there is
no evidence that the modal decomposition involving two sets of active modes gives rise to
better predictions than our amplitude equations (12) for a single set of of active modes.

The system under study is variational, so that it is easy to determine the most stable
structure, either the hexagonal pattern or the twelvefold quasipattern as the loss parameter G is
varied. The quasipattern is expected to occur for small losses, when the threshold intensity
associated with the critical wavenumber q is not too high. Analytical predictions and numerical
results were shown to be in in good agreement.
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IV-Conclusion

In a general manner, multicricality can induce a very rich variety of structures. This
has been successfully treated, using the multiple scale analysis expansion either for a single set
or for two sets of active modes. In the case of a monocritical instability, the number of Fourier
modes that may coexist crucially depends on the shape of the Landau coefficient. In the
DOPO, the shape of the Landau coefficient is very sensitive to the pump and signal
mistunings® and it happens that for some values of this parameter, 8(9) presents a large

plateau on which more than eight or ten modes would be allowed to coexist on the full circle:
For instance, a ten-fold orientational order quasipattern has been obtained for
61 =-05and d 0 close to 24, ; a twelve- mode structure has been also observed that displays

a periodic pattern, in which flowers of twelve petals form a square lattice, as a result of a
locking effect. However, we have not yet found a Landau coeﬁ'icnent satisfying the condition
for turbulent quasipatterns, as discussed by Newell and Pomeau®™.

Finally, let us emphasize that the many-mode patterns arise for large critical
wavenumbers, approximately two or three times larger than the smallest one, leading to rolls
squares or hexagons. It follows that the condition of large aspect ratio is more easily satisfied
for the observation of quasipatterns.
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OPTICKE KVAZIMUSTRE

M. Leber, D. Ledik, E. Resair, A. Tale

Kvaziperiodi¢ne strukture poti¢u od multikritinosti. Mehanizmi nastanka
ovakvih struktura analizirani su za opti¢ke uredaje koji pokazuju razliCite oblike
nelinearnosti. Numeri¢ke mustre potvrduju predvidanja analize viSestrukog
skaliranja.
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