2KaBoT BaH qoMoBHHE

Henan Bykuuesuh, nornpenceuux

Cpiicku xouzpec yjeourversa

Ho capa cre BepoBaTHO Beh NMpOUWTANM JOCTa MaTepHjaia O npocecopy
Mapky Japuhy, Tako fa ce ja He 6uX ymywTao y HaBobemwa GpojHHX Harpaja u
nmybiiKalmja Koje je npogecop Japuh o6jaBuo. Mopam caMo fia HaraackM fa cy
pafonu mnpocecopa Japuha y o6GNacTH KBa3HKPHCTala jeHH Of HajBMILE
uuTHpanux y csery. OH je OMO NMUOHMP HCTpaXXWBalba O KBAa3HKPHCTAIHUMa, O
KojuMa je 06jaBHO U cepHjy Kibura. TOKOM CBOT KMBOTa NMOKa3a0 Ce Kao BEJHKU
TaJlellaT U CTPyulbaK y CBUM OGJIaCTHMa y KOjUMa je pafiio, IUTO MOKa3syjy U
Opojie Harpajie ¥ CTUIEHIH]je KOje je ToOHUO.

C o63upoM fia je Mapko Japuh xupeo y AMepHlH, XTeo OUxX Jla ce OCBpHEM
Ha ILEroB [IpyLUTBEHH XUBOT BaH JOMOBHMHE. YTIO3Hao caM ra 1991. ropguue na
Crencdopn Yuusepsurery (Stanford University), rge cMo 3ajeJHO MPUCYCTBOBAJIU
jemnoj pacripasu o forabajuma y Jyrocnasuju. Buo cam Beoma HMIIDECHOHUpPaH
MapKoBUM KOMEHTapuMa ¥ apryMEHTHMa y paclpaBd, TakO [la CaM My MOpao
npuhiy, fa 6u ce ynosnanu. BpeMmeHom, nocranu cMo 6mucku npujatensu. Of Taja
je npocecop Japuh 6mO jeman o opraHusaTOpa CBHX neMoncrpauyja y Can
PpaHCHCKY NMPOTUB CaHKIMja KOje Cy JYrocnaBuju yBefeHe, U HEKOIHKO MyTa je
yUeCTBOBaO Ha JIOKAJIHHM TCJICBH3MjCKHM KaHaTuMa, objallibaBajyhu y uemy je
npoGiiem. JeHoM je yak u 610 roct y emucuju HauuonanHor pafuja, Koja je 6una
nocsehena Jyrocnasuju. JIpyru yyecHuk y emucuju je 6uo cenarop Jlanroun, Koju
j& OTBOpEHO 3aroBapao aHTHCPIICKY MONUTHKY. [Ipodecop Japuh je ca nakotiom u
apryMeHTOBaHO OfGALHO CBE 1ErOBE TBP/bE, X OCTABHO je BpJIO fo6ap yTHCAK Ha
CIIyIIaolie.

Y nociefmbuxX HEKONHKO TOfMHA XHUBOTA BHINE MyTa je 3KPTBOBAO
MyGJIMKOBale CBOjUX HAyYHMX Paj{oBa, jep M3laBay HUjE XTEO fa INTaMIia CBe
THTYJIe Koje je mpocecop Japuh umao. Haume, on 1993. ropune oH je mocrao
npocecop Ha akynrety "Hukona Tecna" y Kuuny, IITO je yBEK M ca MOHOCOM
UCTHLR0. Afipecy (aKynTeTa je HaBofiMO Kao PenyGnuka Cpricka Kpajuna, 1o je
HEKOME y caMOM BpXy AMEpPHUYKOr (PU3HYKOT [pyIUTBa BEOMa CMeTaso. 360r
opora je mpocecop Japuh Bogmo Benuxky Gop6y ca M3maBaueM, na 6M TOCe
HEKOJIHKO Hefiesba OiGHO fla LITaMIa pajl y HajTHPaKHUjEM JIUCTY 3a (PU3UKY KOjy
usfaje Amepnuko Pusnuko ApywTso. MebyTuM, mocnemiu pan y Bopaehem
uacomucy 3a ¢usmky, Physical Review Letters, y 1994. rogunu, Mapko je, unak,
ycrneo Jja 06jaBu ca NOTIYHOM afipECOM.

Ha kpajy, mopam j1a HanomeHeM fia je npocecop Japuh yBek 6o y Besw ca
JIOMOBHHOM IO MNAaTPHOTCKO] M TpocdecHoHanHoj JUMHUjH. TOKOM cBOr
AYrOTOIHIIILET pajia 10 YHUBEP3UTETHMA IUHpOM AMepHKe 06e36enuo je Gpojue
CTHMNCIIHje HAlUMM HaJlapeliUM NMOCTAMIUIOMCKUM CTYJAEGHTHMa, KaO W IOCETE U
NpeflaBaiba CTpy'balluMa u mpocgecopuma u3 fomoBune. OcTaje HaM la [y6oKo
XaJIMMO LITO je Npepaia CMPT NIPeKpaTHJIa jefily GIIUCTaBy Hayuly KapHjepy.
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World Class Scientist

Joseph L. Birman, Distinguished Professor

Department of Physics, City College of New York,
New York, NY100381, USA

Marko Jari¢ has been a world class theoretical physicist with specializa-
tion in original scientific work on condensed matter theory, and on biophysics.
I have followed his scientific work very closely for about 25 years, since he
first came to the City College of City University of New York, to pursue his
work toward the Ph.D. He wrote his Ph.D. thesis under my mentorship, and
we have been in close touch thereafter. His first work, with me, was a deep
study of the group theoretical symmetry effects embedded in the Renormal-
ization Group Programme for second order phase transitions. This was path-
breaking work in my opinion, which has laid the groundwork for additional
studies on the group theory aspects of the recursive renormalization proce-
dure, and the significance of the approach to fixed points manifesting some
new dynamical symmetry. Marko discovered sets of symmetry related fixed
points and he was able to analyze them, and determine in some cases cer-
tain ”selection rules” which constrain the allowed set of fixed points. While
still a graduate student Marko deepened and generalized my earlier work on
the ”Chain Criterion” for symmetry-breaking in a series of successive sec-
ond order phase transitions. Again in this work he grasped an essential new
point (which I had earlier overlooked) and was able to put it into precise
mathematical terms where it can be applied. This criterion has been widely
used in studies of successive phase transitions (see the monographs by Jerszy
Kocinski "Theory of Symmetry Changes at Continuous Phase Transitions”
(Elsevier Press, 1983); and Jerszy Kocinski ” Commensurate & Incommensu-
rate Phase Transitions” (Elsevier Press, 1990)).

The arc of his creativity continued to rise quickly, as he turned his at-
tention to two important topics: the theory of quasicrystals and the theory
of crystallization. His original work on quasicrystals continued the general
theme of symmetry, insofar as he exhaustively studied the underlying icosa-
hedral symmetry group for quasicrystals. He determined the mathematical
invariants and the complete set of basis functions for this group—surprisingly
this had never been done before, despite the formal knowledge for more than
a century that the icosahedral group is one of the discrete subgroups of the
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three-dimensional isotropy group. The result of this investigation was a ma-
jor paper, co-authored by L. Michel and R. Sharp, which is a landmark work
of immediate relevance and use to any investigator of quascrystals. I might
note that as a side effect of Marko’s investigation of the icosahedral symme-
try group, he was able to quickly solve an important problem relating to the
possible appearance of "hexatic” phase in an icosahedral quasicrystal system.
This last problem had occupied Professor David Nelson of Harvard for some
time and he was "astonished” (he informed me) at how quickly Marko solved
this difficult problem. Marko simultaneously investigated the physics of de-
fects in quasicrystals and determined the relative stability of several of the
general types against merger, or against disappearance into the bulk. This
work led to his major studies on the totally novel type of elementary lattice
distortion in such media-now known as "phason” disorder. Marko’s work
permitted the experimenters to carefully analyze the complicated scatter-
ing patterns and to quantitatively estimate the quantity of phason disorder
which is present.

After a period of slow growth (in the early 1990’s) the topic of quasicrystal
physics is now set for a new major push forward, in large part due to the
availability of large cm-size materials. Marko’s work, with his students at
Texas, has provided the tools by which this new generation of materials can
be classified as to their structural purity. As I recently learned from Professor
Danni Schechtmann of the Technion (a co-discoverer of quasicrystals) when
I visited him in January of 1998, the new generation of quasicrystals is even
finding use in kitchen cookware (as linings for cooking utensils), due to their
marvelous thermal insulating properties. This heightens the importance of
being able to utilize Marko’s analysis in practical fashion.

In his work on the theory of melting-crystallization, Marko deeply clar-
ified the conditions needed to form perfect or disordered crystals when, for
example a molten metal begins to form the ordered crystalline phase. In this
work Marko was able to apply some general theoretical background, due to
Ramakrishnan and others, to the concrete problem of melting and crystal
growth. The new theory has been a most important tool in hands of modern
crystal growers who desire to modify the conditions of concentration, tem-
perature gradient, and cooling rate, in order to produce the largest and most
perfect crystal and also quasicrystal. ’

In recent years, before he was struck by the fatal illness, Marko had re-
turned to an earlier interest in biophysics. His work was focused on the
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conditions for the stability of different morphological or structural types
for poly-molecules, including polymers. In this work, which in my opinion
was brilliantly conceived, he utilized an important—-and perhaps surprising—
analogy between such biological molecules and the inorganic magnetic, and
antiferromagnetic, systems which have been very long studied.

I believe that the above indications of the highlights of Marko Jarié’s
original scientific contributions merely touches on them. His work was char-
acterized by an unusual ability to penetrate to the vital core of a problem, to
extract the essential elements, and then to formulate and exhaustively solve,
in proper mathematical fashion, the quantitative analysis of the resulting
mathematical models. Out of this work often came a deep and beautiful
understanding of the essential physics involved, which Marko was then able
to present to the scientific community in an economic and clear fashion. The
tragedy of his untimely death at age 45 is that he was now entering the full
power of his mature scientific ability, so that we have been deprived of even
more brilliant and seminal understanding of the physics of quasicrystals — in
which he was an acknowledged world leader — as well as biophysical problems
with potential for improving therapeutic functioning of anti-illness medicines.

[ want to touch briefly on Marko’s superb ability as a teacher. While still
in Graduate School, he organized and was the "sparkplug” of a graduate stu-
dent seminar which engaged all the graduate students in physics at that time.
As this seminar evolved, he brought in faculty for some special lectures, but
mainly Marko and several of his then contemporaries would review current
literature, and the status of their own researches. Marko went on, during his
academic career in several academic locations — finally at Texas — to become
a very gifted teacher. His students were extremely appreciative of his clear
and well-prepared lectures and were attracted to him. His graduate students
and all who heard him lecture were taken strongly by the exceptional clarity
and enthusiasm of his presentations. In short, he has been able to transfer
some of his passion for physics to later generations. I define this as superb
teaching ability.

I need also to mention at this point Marko’s deep and passionate in-
volvement in the terrible troubles which have befallen his country in recent
years. In his last years he put much energy into seeking solutions, proposing
them, and working to settle conflict. Another dimension to the tragedy of his
death is that his intelligence and creative ability is now lost to those seeking
to implement permanent, peaceful, and fair solutions.

47



In my opinion Marko V. Jaric represents the highest ideal and the highest
. realization of the ideal of: creative scientist, educator and teacher of his
students; a seminal and brilliantly original physicist, and engaged human
being in finding solutions to real-world problems.
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JEDAK PRIMER HAMILTONIJANA XOJI JE U PROTIVRECKOSLI
SA TRECIM PRINCIPOM TERMODINAMIKE

I
lerszodinanika, kxao fenouenolbéxa disciplina, daje na= dobro poZnate
osnovne rrincipe. Jedan od njih je i tredi ;rincip termoiinanike Koji
2aie da entropija po jednoj Zestici te3i nuli iada orej Zestica teii
besionaino i tempetatura_teii auli. 7 fojediniz uizbenicima noie ce
nasl i nesto druga%ije foriaulisan tredi ;rincip termodinamiker kod siste=
3a,3ije Je osnovno stanje nedegenerisznogertropija o jednoj Zestici
tezi nuli kada bdbroj %estica te3i beskonaZno, a Leqﬂeratura tezi nuli.
ldedutim, u okviru statistiXke mehanike kao teorijske, natematiike

" discipline nogude je naéi primere koji su u protivreénosti,ik;a ovako

formulisanim tredin prinéipom; Tako, na primer, Robert B. Griffizhs L1/
navodi da hamiltonijan oblika.

Ay '}{ 3[26‘ 2:(6".6&1—5)} ﬂ-ms£ 6" —&,O,-\—i

protivre¢i tredem principu.

Zaista ovaj hamiltonijan lanca I spinova, koji mosu imati #ri projekecije,
daje nedegenerisano osnovno stanje (1U-C>** 61-03 . Da bisno nasli kaxo
se ponada entropija po éestici 55 potrazimo prvo statistiéku sunau

sistema: . . -ij_ 1‘!'2'(5'(6'“4) ]

.
s Q= Qwn =727 .1 Q 3 =i

S=p,l & 40,1
¥ako svakil spin mo%e inmati tri projekecije nmoguie je ostvariti ukupno
3 konfiguracija od N spinova. Tako “a m0Zeno napisati statictidku sumu
u obliku:

PE‘
(3 Z @

Isl
gde se suniranje vrﬁi Do svin konfi;W*avijana.a:
_1, 2
) .‘ = [ - )::(5"-6:-74) ] V
d =t
Z ‘oznadava da se sunira za neku J=tu Konfiguraciju.

tostavimo rorespodenciju -1+=0, O<=1, 1=~=2, iuda sve konflouraciie
notemo indeksirati na slede:li nadin:
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-10--

indeks konfiguracija
1 ¢CO...00
2 i 000...01
3 G00...C2
4 ) COO...lO
e 002...22
3, “010...00
il 010...01
sread cl2...22
23 : 020...00
(-u:\ 0220002-2
o 100...00
pEes 19¢..,22
23 200, ..00
¥

222...22
—
N (1))
Kada smo ovako 1ndeksirali konfiguracije podelimo Q. npa tri sume:

(w) (,u
) ’ (/93]

2D
p -1\»5
o (8= I ‘+2:Q zj ‘._Q‘-\»Q,,_-x-Q
' =334
061g1edno 4o dn pyakl £ 4“‘3 ime jedan jeamo jedsn sebi odgovarajuéi

E“w3<a<2> K0ji se dobija snenom /V/ —=2 5.1r¢( To .odgovara smeni u ha-
ailtonijanu Gi=-1—>4 1€7=1—--&. Iz oblika haniltonijana je o%igledno da

se pri takvo] smeni f—:.,l ne menja, a to gzna&i da je
(m ) e ()

(6) - -Q,= 7,
Tako da imamo:
()
&) Q = (Sl« *'CZQ
)
Raz:\otrimo Q‘ : e s ‘Q ay
;) 2 P a 5 E
@ 138 =Q1=Z € "ZQ_P'*ZQP ¢ Q”‘
=t =
Uolimo sada ca je:
Wt
E‘-- 14& < 5”-2"
w) (nA)
! £i= 1] B+ 3 3<as3
{ [N-

Byjv 2372} <37
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Primenivii (9) dobijamo'
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0)
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Q z 2 G
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(i@ 77 {n Q kS
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1 4
I .
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Ta.ko"?da dobijamo:
1 -i,— (“8 — &%“" ‘T*LQ—?:‘ )
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12+

gde je F slobodna energija. Kako Je:

* " (u)
fla F= %1l Q
imamo: (Y}
w) w !
Conm S ok BTG _ (5_9. P T2 ;@.%)
RN T A = NN B
Za veliko XN dobijano+:
&MA": K‘L-‘-)\L I KT—B— QM&&""'
N—co a—r rb
(24) 7 Q
= m[& (%«L\}qu,a?”) B
(3‘43‘f~r16f3P )V?f'FZJZ°“
Odavde Je oéiglgdno:
(2) fow, i A = kluz >0
T—=o N-~=oco ¢
a)
*Kada se eksplicitno zameni 1zraz za QU vidi Be | da je mogude:?
Liw, L8 _ B g 2ud
N—>oo BT AN B’I‘N""’ N
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Several techniques for visualizing and analyzing scatterer densities of quasiperiodic quasicrystals,
both in the physical space and in the associated hyperspace, are discussed. In particular, a method
for analyzing quasicrystal densities in terms of tilings is introduced and illustrated for the
icosahedral Ammann tiling. A specific application to the x-ray and neutron scattering data of
i(Alg 579Cuq 108Lig 322) is made. The six-dimensional hyperspace density of i(Alg s79Cug 0sLig322) is
found to be consistent with the presence of hyperatoms on vertices, edge centers, and body centers
of the hypercubic lattice. Some gross features of the hyperatom shapes are suggested. In the
physical space, it is shown that densities around some high symmetry points are similar to those
in R(Algse4Cuq 116Llig320) crystal, while around others, they suggest new atomic clusters. The
Ammann tiling is found to be a useful template for the structure of i(Alg 579Cug j08Lig.322), With the
rhombic dodecahedra as important building units. While several structural models of
i(Alg s70Cuq 108Lig327) are generally consistent with the results of the density analysis, some
differences are detected. A symmetric decoration of the rhombic dodecahedron, similar to the one
found in R(Alg s64Cug 136Lig 320), that is a basis for several structural models, is not consistent with
the density analysis. No sign of the pure Al inside the rhombic dodecahedra, nor of the related Al
hyperatom at the body center of the hypercrystal, could be detected. © 1995 American Institute of
Physics. © 1995 American Institute of Physics.

INTRODUCTION

Determination of the real space quasicrystal structures from
their diffraction data available in the reciprocal space is an
important problem in quasicrystal research.'? A real space
information about the structure is contained in the Patterson
function which can be easily obtained by the Fourier trans-
form of the observed diffraction intensities. Indeed, several
authors have constructed and analyzed pair distribution
functions (Patterson functions) of various icosahedral and
decagonal quasicrystals both in the physical space®~% and in
the hypothetical hyperspace that is associated with their
assumed quasiperiodicity.* !> However, since the Patterson
function is a density—density autocorrelation function, it
does nof uniquely fix the actual density of scatterers, sig-
nificantly limiting the structural information it contains.
This lack of uniqueness can be traced back to the fact
that diffraction intensities give only the magnitude of the
structure factors, not their phases. However, two methods
were developed recently for solving the phase problem and
reconstructing structure factors in certain classes of quasi-
periodic quasicrystals.'>!* Therefore, the density of scatter-
ers can be easily determined for such quasicrystals by cal-
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culating the Fourier transform of the reconstructed structure
factors. Then, the resulting density can be analyzed either
in the physical space or in the hyperspace associated with
the quasiperiodicity. Because of the lack of periodicity, and
because of the so-called “phason’ disordering responsible
for the occurrence of partial occupancies of sites in quasi-
crystals, the density analysis in the physical space is most
useful when the density can be associated with a packing
(tiling) of a relatively small number of clusters (tiles).
Then, the density on a tile of a given type needs to be
averaged over all appearances of the tile in the structure.
However, since a quasiperiodic density can be generally
represented as a cut through a higher dimensional periodic
density, an analysis in the hyperspace may often be more
informative.

An objective of this paper is to summarize the theo-
retical tools necessary for the analysis of reconstructed qua-
sicrystal densities. In particular, a method for the analysis
of quasicrystal densities in terms of tilings will be intro-
duced. These tools will be applied to i(Alg s70Cuq 08Lip322)s
and inferences about its atomic structure will be drawn.

Experimentally, the high resolution transmission elec-
tron micrographs (HRTEM) reveal the phase information of
the scatterer density, which cannot be obtained from the
Patterson function. While the connection between two-
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dimensional projections of the reconstructed scatterer den-
sities and the HRTEM images is certainly more compli-
cated, it will be shown that they are in a qualitative
agreement for i(Alg 570Cug 105Lig 35,). This lends a support
to the accuracy of the reconstructed phase and encourages
further analysis of the reconstructed scatterer densities.

The quasicrystalline i(Al, 570CUg,108Lig 322) will be rep-
resented by a six-dimensional periodic crystal. An analysis
of the reconstructed i(Al, 570Cug 108Lig 355) densities in high
symmetry hypercrystal planes will reveal that high densi-
ites occur mainly along three-dimensional planes parallel to
the “inner space,” the space orthogonal to the physical
space. These high density three-dimensional planes are
found centered at vertices (V), edge centers (E), or body
centers (B) of the associated hypercubic lattice, hinting that
these should be the locations of hyperatoms in a perfectly
ordered structure. The density evaluated within these planes
will provide clues to the hyperatom compositions and
shapes. By considering scatterer densities for both x-ray
and neutron diffraction, which we shall simply call electron
and nuclear densities, respectively, it will become clear that
the chemical composition of V and £ hyperatoms must be
mainly Al and Cu, while the B hyperatom must be mostly
Li. The density will be found reduced at the center of the V
site, forming a shell slightly extended along the fivefold
symmetry axes. This suggests a hyperatom shape that is
close to a slightly rounded icosahedron with a hole at its
center. At the E site, the density will suggest an oblate
hyperatom shape that is squashed along its fivefold axis
with a decagonal cross section and peaks in the directions
of the perpendicular twofold axes. The isodensity surfaces
at the B site will indicate a shape close to a pentagonal
dodecahedron with slighly concave facets perpendicular to
the fivefold axes.

The physical space densities will be analyzed prima-
rily in terms of the Ammann tiling. The densities and their
rms variances will be evaluated on the average prolate and
oblate rhombohedra (PR and OR, respectively) in several
types of local environments. It will be evident that the tiles
which are inside rhombic dodecahedra (RD) are consider-
ably different from those that are not. Furthermore, based
on the size of the variances it will follow that the RD could
be considered as an independent tiling unit. While the den-
sity analysis will be found generally consistent with the
i(Alg 570Cuq,108Lig 322) atomic structure models of Refs. 15
and 16, some important differences will be identified.
Among other differences, it will be shown that the exist-
ence of a separate Al hyperatom at B, postulated in the
strueture model of Ref. 16, but questioned in Ref. 15, is
inconsistent with the density reconstructed here.

The remainder of this paper is organized as follows. In
Sec. I we present the formalism necessary for the analysis
of quasicrystal densities in the hyperspace and in the physi-
cal space with a particular emphasis on the Ammann tiling
analysis of physical space densities for icosahedral quasi-
crystals. Then, the results of an application of this formal-
ism to i(Alg 570Cug 105Lig322), and their consequences for
the modeling of i(Alg s79Cuq 108Lig355), are discussed in
Sec. II. The conclusions of this paper are summarized in
Sec. III. This work is based in part on the Ph.D. thesis of
one of the authors,'” and on the Senior thesis of another.'®
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L FORMALISM
A. General

Two recently developed methods facilitate determination of
the absolute scale s of the diffraction intensities / (Q) and of
the phases &Q) of the structure factors F(Q) for certain
classes of quasiperiodic crystals,'>4 They have been suc-
cessfully applied to both x-ray and neutron diffraction data
of i(Alg s70Cuq y08Lig 32,) quasicrystal.'®!* Like in the ordi-
nary crystal structure determination, the reconstructed
structure factors F(Q)=svI(Q)e'®® can be used as a
guide for the quasicrystal structure determination by recon-
structing the quasicrystal density of scatterers p(r),

p(r)=§ F(Q)ei@r, (1

Although an analysis of this density can be carried out
fully in the physical space, a higher dimensional represen-
tation of the density may provide a conceptually simpler
picture. Namely, it is well known from the original theory
of quasiperiodic functions,'®% as well as from its applica-
tions to incommensurate crystals?!? and quasicrystals,>-%’
that a quasiperiodic function can be represented as a cut
through (a restriction of) a periodic function in a higher
dimensional space (hyperspace). The reader is directed
to the Appendices of Ref. 15 for further description
of the construction of the hyperclzstal, our notation,
and specific coordinate systems?$~° appropriate for
i(Alg 570Cug 08Lig 357) that we will use here. The hypercrys-
tal structure factor at the_reciprocal hyperlattice vector
Q=(Q,Q") is defined by F(Q)=F(Q) so that the hyper-
crystal density p(r)=p(r,r"),

pO=2 F(Qe 0, @
Q

satisfies p(r)=p(r,r* =0) by construction. As described in

Ref. 15, all-quantities with an overbar are defined in the

hyperspace, while the quantities with a 1 superscript are

defined in the “inner” space, the orthogonal complement of

the physical space.

Extracting information from the reconstructed quasi-
crystal density is difficult precisely because the density is
quasiperiodic and, thus, lacks a periodically repeating unit.
Even if it were possible to describe the quasicrystal as a-
quasiperiodic tiling, with a small number of (quasiperiodi-
cally) repeating units, it would be difficult to recognize
such a tiling in the reconstructed density. Namely, like any
quasiperiodic structure Jguasicrystals have phase degrees of
freedom, “phasons,”?*?%° which are realized in a quasi-
periodic tiling as certain tile rearrangements.?®3! Such tile
rearrangements would produce, in principle, a dense set of
partially occupied sites throughout the tiling, obscuring and
diminishing the identity of the individual tiles. A similar
effect could be also produced by the fluctuations in the
reconstructed density caused by the experimentally im-
posed truncations in the sum in Eq. (1). While also affected
by these limitations, the hypercrystal density given by Eq.
(2) is easier to analyze since it is periodic. The hypercrystal
approach can be particularly useful when investigating high
symmetry local environments or when searching for an un-
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derlying tiling structure. However, the hyperspace is six
dimensional for i(Algs79Cuq 108Lip 322) and an examination
of the six-dimensional periodic i(Alg 570Cug j0sLig322) den-
sity is not a simple task. In this paper we shall resort to a
visualization of the hypercrystal density in certain two- and
three-dimensional planes. In addition, we shall consider
projections (convolution) of the densities from regions per-
pendicular to the visualization planes, as well as the ap-
proximate removal (deconvolution) of thermal fluctuations

from the densities. One of the main aspects of this paper’

will be visualization and analysis of quasicrystal densities
in terms of tilings. Within a tiling picture of a quasicrystal,
we shall consider averaging of reconstructed quasicrystal
densities over different locations of a particular tile in a
given local environment.

Let us first consider an n-dimensional subspace
(plane) of the D-dimensional hyperspace, spanned by the
cartesian basis {li,}%.,,(n<D), located at Ty and param-
etrized by r,=Z ,(r,-0,)d,. Then, the hypercrystal den-
sity restricted to this plane is simply given by

pu(r)=3 F(Qe @Rg-in, ®)
Q

where Q,=Z,(Q-11,)u,. On the other hand, let a sub-
space orthogonal to this plane be spanned by the cartesian
basis {Wg} 5., m<(D—n), and let it be parametrized by
r,,=Zg(r,-Wg)Wg. Then, projection of the density on the
r, plane, from a region W of the r,, space, can be calculated
by the following substitution in Eq. (3),

F(Q—F(QF,(Q.), @
where Q,,= Zﬂ(ﬁ-ﬁﬁ)ﬁﬁ and

F.(Q.)= jw e~ hed®r,, )

In addition, several types of disordering, including thermal
phonon and phason fluctations, can be described by a
Debye—Waller factor.”’ Such disordering can be approxi-
mately removed from the data by deconvoluting an overall
Debye~Waller factor as follows

F(Q—F(Q)e¥®q, ©6)
where the tensor B is obtained in the process of reconstruct-
ing the structure factors.'>!*

In cases of interest here, we shall evaluate the density
of i{Alg s70Cuq 108Lig.322) in the physical space r,=r (n=d
=3), in the inner space r,=r" (n=D—d=3), or in two-
dimensional high symmetry hypercrystal planes r,=(r,r)
(n=2), located at high symmetry points T, in the hypercrys-
tal unit cell. In addition to the projections of the two-
dimensional slices of the physical space density, we shall
consider projections described by Eq. (4) for the densities
in the inner space, r,=r", with r,,=r and W corresponding
to a small sphere. We shall also briefly mention the effect of
deconvoluting thermal fluctuations using Eq. (6).

In order to be able to interpret a quasicrystal structure
as a tiling, it is necessary that the tiling has the same sym-
metry and quasiperiodicity as the reconstructed quasicrystal
density. Therefore, the reciprocal lattice and the phase rela-
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tionships between the symmetry related structure factors of
the tiling must be identical to those of the quasicrystal. The
orientation of the tiling relative to that of the density, can be
determined by matching the two reciprocal lattices. Simi-
larly, the scale of the tiling (i.e., its “lattice constant’”) can
be fixed, up to the well-known inflation symmetry scale
factor,’? also by matching the two reciprocal lattices.*
Then, the relative translation between the tiling and the
reconstructed density can be fixed, up to a discrete number
of choices. Equivalently, the relative rotation, scale and
translation needed to match the tiling to the density can be
accomplished by matching of the hyperspace Wyckoff sites
of the tiling and of the density. Generally, a tiling with the
same symmetry and quasiperiodicity as that of the quasic-
rystal density in the d-dimensional physical space, can be
also represented as a cut through a D-dimensional hypertil-
ing with the same symmetry and periodicity as that of the
hypercrystal.33* The Wyckof sites are then defined in the
usual way in the hyperspace.

Given such a tiling, we would like to calculate the
density pr(r) defined as p(r) averaged over all tiles of a
given type T, where r is measured relative to a fixed point
of the tile (e.g., one of its vertices, its center of symmetry,
etc.). A tile type might be defined not only by its shape and
orientation (a volume vy), but also by its surrounding.
Therefore, we may use the term “tile type” also to mean a
particular arrangement of several tiles. Then,

pr(r)=(p(r+Ry)), @]

where revr, and Ry are the positions of the tiles of type T.
Since each Ry is the physical space projection of a hyper-
lattice vector Ry, it is not difficult to prove starting from
Eq. (1) that Eq. (7) reduces to

pr(r)=§ F(QF(QYe™i@r, ®)

where the inner space tile form factor F T(Q‘) can be cal-
culated in the closed form

FAQ)= (@ )= - f Al o
vt Jut

In cases that are of interest to us, the inner space projec-
tions Ry of the tile locations uniformly fill a-compact do-
main v} = {R%}, and the above closed form is correct to
order O(N~YP=9)) " when N, the number of tiles, is very
large. Using a similar analysis, it is also possible to deter-
mine the rms variances or(r) of the density averaged over
the tiles of a type T,

oHD)=([p(r+Rp)—pr(n)]?). (10)
This variance can be also written in the Fourier series form
oHr)=2, F(Q+Q)F(-Q)F(Q)e "

QQ’

—pX(r). (11)

In the case of i(Aljs79Cuq 0sLig322) We shall be interested
in an icosahedral quasiperiodic tiling by the Ammann
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Figure 1. Ammann tiles, the prolate (a) and the oblate (b) rhombohedra, and their grouping inside a rhombic dodecahedron (c).

rhombohedra.**~3 The above formulas, applied to the Am-
mann tiles in several environments, are further elaborated
in the following subsection.

B. Ammann tiling

The Ammann tiling is an icosahedral quasiperiodic tiling of
space® by PR and OR shown in Figs. 1(a) and 1(b).
Vertices of the Ammann tiling can be obtained by a cut
through a six-dimensional simple cubic hypercrystal deco-
rated by one inner space rhombic triacontahedron (RT) per
unit hypercell. In fact, these RTs are projections of unit
hypercells (hypercubes) onto the inner space. Several de-
- tailed studies of local tiling configurations found in the Am-
man tilings have been completed.>”

As described in the preceding subsection, in order to
average a function over the tiles of a particular type T, it is
necessary to first determine the inner space volume v de-
fined after Eq. (9). That is, it is necessary to determine that
portion of RT which corresponds to the tile type T. Let a
tiling type be specified by its “motif,” a set of M vertices,
T= (R,‘}':".1 , defined relative to, say, R;=0. Then, it can

be easily shown that vy = ﬁf"_ ‘U;YIR‘] , where we denoted
"

by U;YIR*! the inner space RT centered at R*37-*! An
equivalent form for evaluating vy, which we shall use
here, can be obtained after introducing T{‘rl]!(rL

— R;}¥_,, an inner space motif associated with T and
centered at some r*. Then,

r={r| T e vih, (12)

and instead of the averaging over all occurrences of T in the
tiling, one can fix T at the origin (i.e., R;=0) and average
over the inner space domain vy as stated in Eq. (9).

We are interested here in the following tile arrange-
ments: PR, OR, and the rhombic dodecahedron (RD)
shown in Fig. 1. Specifically, we shall consider the PR
shown in Fig. 1(a) to be generated by the three vectors,
denoted ay, a,, and a4 in Table I, that emanate from R;=p.
In the figure, these three vectors are pA = aé;, pB = ae,,
and pC = aé,, where a is the rhombohedron edge length
and E,» is the unit vector in the physical space along the jth
fivefold symmetry axis of the icosahedron (j=1,...,6). The

vector aé; is simply the physical space projection of the
generator éﬁi of the hypercubic lattice, where a is the hy-
percubic lattice constant and :, is the jth cartesian basis
vector in the hyperspace. The motif associated with the PR
is simply the set of vertices of this PR, T
= {p,A,B,C,0,E,J,H}. Using the formulas given in Eq.
(12), it can be verified that the inner space domain corre-
sponding to the PR, and denoted uj; , is the inner space PR
shown in Fig. 2(a), generated by the three vectors a;
= aé; = hb, 3} = —aét = ha, and a} = aé} = hc, also
listed in Table I, that emanate from ry = §(&f + & + &
- & + & — &)=h, where & is the unit vector in the inner
space along the jth fivefold symmetry axis of the icosahe-
dron, and aé;‘ is the inner space projection of the hypercu-

Table L. The inner space domain vpg . The first column lists the three
vectors a,, a,, and a,, that emanate‘}mm the origin to generate PR in

the physical space. The second column gives ry from which the three
vectors a1, a;, and a}, given in the third column, emanate to form

the inner space volume vt =PR*. The data that can be obtained by
simple inversion are not shown.

a,,8;,8y ~ s 8,939
ae,ae, a8 HH+H+H-H+E-&) i), -af a0
aé,, aéy, aé, el -g+8+8-8+&)  adl,-adf a8

al
1

ag, aé,, aés aéy ,~aé; ,aé;
aé} ,—aé; ,a&;
aé} ,—aé; a5
ael ,—aé ,~ae}
aé ,—aé; ,—aes
ae} ,—aéj,—ae;

ag; ,—aé; ,—aé}

2
ag,, aé;, ad A -G+E-H+&E+E)
ae,, ag, aé,
ag;, —abs, ad; Y- ++E+E-E+E)

R

agy, —aég, ag, .

)

aé,, —aé,, aés

oy

aés, —aey, aég

aél ,—aé; ,—aej °

B e

agg, —ad,, aé, —H+egrei-gret+e)
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Figure 2. The PR inner space domains (a) v:; ,(bu

bic lattice generator 53,-. The specific coordinates of each
vertex of uj,‘ are listed in Table II

Similarly, we shall consider the OR shown in Fig. 1(b)
generated by the vectors 0B = —aé,, oH = aé,, and 0K
= aég that emanate from R,;=o0 and are listed in Table III.
The motif associated with this OR is the set of vertices
T={0,B,H,K,I,E,F,G}. The corresponding inner space
domain v is the inner space OR shown in Fig. 3(a). It is
generated by ba = —aé; , bc = —aés, and be=aé} ema-
nating from rg=$(—&5 — & +& +&; +& +&)=b,also
listed in Table III. An explicit list of the vertices of v} is
given in Table IV.

There are 20 equivalent orientations of either PR or
OR, and each can be specified by three vectors a,, a,, and
a; that emanate from a threefold symmetric vertex of the
rhombohedron which is always taken as the origin. Simi-
larly, the inner space domain v‘,L- for each of these rhombo-
hedra is an inner space rhombohedron and can be specified
by three vectors ay, aj, and aj that emanate from its

Table II. Coordinates of the vertices shown in Fig. 2 for the inner
space domains vpg. They are expressed in the second column in
terms of the rational coefficients 7 as = jar>&%. In the third col-

umn, they are expressed in terms of the inner space cartesian coordi-

nates x*, y*, and z* in the units of a/\/7+ 2. We use the coordi-
nate system of Ref. 28.

Vertex (rt,eeert) x* )
(0,0,0,0,0,0) 0,0,0)
(1,1,1,0,0,0) 2-71,0)
¥ Hu,-1,-1,-1) (1,1,-1)
b H1,1,1,1,-1) ;1,1
c H,1,1,-1,1,1) (1-7,7,0)
d ja1,-1,-1,0) (1-70,-1)
e H,11,1,1,1) (1-70,1)
f ja,1,1,1,-1,-1) (1,1-70)
g jan1,-10) (1=71,-70)
h HLL1,-1,1,-1) (1,7+1,0)

1

L
= and (c) Upo-

threefold symmetric vertex at x{)‘ 3738404243 e it a;,
rj , and a; in Tables I and III for ten orientations of PR and
OR, respectively. The remaining ten orientations of PR and
OR can be obtained by the inversion through the origin.
Volumes of the existence domains are easily calculated,
vt =| a7 - (a3 X a3)|, to give v; = 27°7%a’ and v,
=27%7a’, where = 1/Y7+2and 7= (1 + \/3)/2 is the
golden mean. This immediately yields the numbers of the
specifically oriented PR and OR per vertex of the tiling,
n,=vy/vgr = 157 'andn, = v, /vgr = 7 2, where vol-
ume of the thombic triacontahedron is vgr=20777a>. The
integral in Eq. (9) can be easily evaluated for a rhombohe-
dron giving

Table IIL. The inner space domain v¢yp . The first column lists the
three vectors a,, a,, and a;, that emanate {rom the origin to generate

OR in the physical space. The second column gives rg from which the
thee vectors ay , a3, and aj , given in the third column, emanate to

form the inner space volume v g =OR'. The data that can be ob-
tained by simple inversion are not shown.

2y,3;,8y o
0

ay .5} 8,

a - 2 a - - - - - - ol - -
—aé,,aé,,aé i("f*“é*‘i"‘é“";"ﬂ aéy ,—aé; ,—ae;

i BA] ik a sy .y ay
- i — 8 — al ot at - -
ae;,ae;,ae, i(—e,—el+e3+e,+e, +¢,) 9¢,—aes,—aey
s 2 H a - - - - - N aL 2t AL
—ae,,aey,ae; .2_(_¢§+e§_,§+,t+,§+,§) aes ,—ae, ,—aey
a .2 -2 a Al g a1 4 Al af 4 sp , ap sL aL _ sl
—aé,,aés,aé, i(‘ﬁ""z*';“'a"’es*"e) aey ,—aé; ,—aeé;
2 a 2 a a A a N - - at Ay el
—ae,,aeg,ae, ;(—ef+e’i+e",‘+e}—e§'+et) ae; ,—aey,—aeg
a A A @ ap ey Al Ay ial sy AL Al SL
ae;,—aeg,aes -2-(—e|+e,—e,—:.+e,—ea) ae; ,—aey,—aey
s s s B ag af Al Ay sl s AL - P ¥
aey,—aey,ae;  —(—gl-el+ej—ei—ei+el) aey,—ae;,—ae
2 1~ TG -GG Te
a A a a - wa - & - al _ sl _ e
ae,,—aéy,ae, i(‘ﬁ*'i'%*d“?"é) aé} ,—aé; ,—aé;
- o - a = . ” = A & al oAl ey
aés,—ae,,aé; i(_e}_¢§+¢§-¢§+¢§_¢t) aet ,—aé; ,—a&;
2 s 2 @ . ay ap my sk mp s T R U |
aeg,—aes,ae, 5(“‘:"%‘%*‘&“?*':) ae; ,—ae, ,—aey
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