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We study the end stages of gravitational collapse of the thin shell of matter in ingoing Eddington-
Finkelstein coordinates. We use the functional Schrodinger formalism to capture quantum effects in
the near singularity limit. We find that that the equations of motion which govern the behavior of the
collapsing shell near the classical singularity become strongly non-local. This reinforces previous
arguments that quantum gravity in the strong field regime might be non-local. We managed to
solve the non-local equation of motion for the dust shell case, and found an explicit form of the
wavefunction describing the collapsing shell. This wavefunction and the corresponding probability
density are non-singular at the origin, thus indicating that quantization should be able to rid gravity
of singularities, just as it was the case with the singular Coulomb potential.

I. INTRODUCTION

What happens at the last stages of the gravitational
collapse of some distribution of matter is still unknown.
The reason is our lack of a fully fledged theory of quan-
tum gravity which will fatefully describe quantum dy-
namics in very strong gravitational fields (e.g. near clas-
sical singularities). Since the formulation of quantum
gravity still seems to be far from our reach, we have to
work with what we have at hand, and try to push it as
far as possible. Along the way, we might get a glimpse
of what the ultimate theory of quantum gravity should
look like.

The purpose of this paper is to study quantum aspects
of gravitational collapse of a shell of matter in the con-
text of the functional Schrodinger formalism [1-14]. We
will work in Eddington-Finkelstein coordinates which are
convenient for studying the question of the black hole for-
mation till the very end where the collapsing matter dis-
tribution crosses its own Schwarzschild radius and starts
approaching the classical singularity at the center. The
first interesting finding is that the equations of motion
describing behavior of the collapsing shell near the clas-
sical singularity become non-local. It has been argued for
a while that (for various reasons) quantum gravity should
ultimately be a manifestly non-local theory [8, 9, 15-17],
(see also [18-20]). Our finding is a strong indication that
something like that might indeed be true. While the
functional Schrodinger formalism is not a full theory of
quantum gravity, it should however capture some aspects
of it. Non-locality might be one of those important as-
pects.

Non-local equations are notoriously difficult to solve.
However, manipulating the equations of motion in the
near singularity limit, we managed to find an explicit
solution to the non-local Schrodinger equation. Interest-
ingly enough, the solution for the wavefunction is non-
singular at the origin. In fact, the probability density
becomes zero exactly at the origin. This indicates that
quantization can perhaps remove classical singularities
from gravity, as argued from many different points of
view [8, 9, 21-27].

II. THE SETUP

In this section we will setup the metric of a collapsing
shell of matter in ingoing Eddington-Finkelstein coordi-
nates. Since this space-time foliation is non-singular at
the Schwarzschild radius, it will allow us to study the
the gravitational collapse as the shell is approaching the
classical singularity at the center.

The radius of a collapsing spherically symmetric shell
of mater is R. The parameter of evolution is the ingoing
null coordinate v related to the asymptotic Schwarzschild
time as

v=t+r" (1)

where 7* is the tortoise coordinate. The trajectory of
the collapsing shell is then simply » = R(v). The metric
outside the collapsing shell is

ds® = — (1 - RS) dv® +2dvdr +12dQ%, r > R(v). (2)
T

By Birkhoff theorem, the interior metric is Minkowski
ds* = —dT? + dr® +r*Q% r < R(v) (3)

The interior time coordinate, T, is related to the ingoing
null coordinate, v, via the proper time on the shell, 7.

The quantity M in Eq. (4) is an integral of motion,
and has a clear interpretation of the total energy.

a (4)

_ 2y3 M

It contains the rest mass of the shell u, the kinetic energy
represented by R, and gravitational self-energy p?/(2R).
We will therefore identify it with the Hamiltonian of the
system.[The subscripts here refer to the derivative with
the respect to the corresponding coordinate, i.e. R, =
OR/0T.]

We now express the R, in terms of Ry to obtain

_ ! _ "

PROCEEDINGS ON LATEST ACHIEVEMENTS IN PHYSICS ON THE OCCASION OF THE 20TH ANNIVERSARY OF THE "PROF. Dr MARKO V. JARIC" FOUNDATION 1



PROCEEDINGS ON LATEST ACHIEVEMENTS IN PHYSICS ON THE OCCASION OF THE 20TH ANNIVERSARY OF THE
"PROF. Dr MARKO V. JARIC" FOUNDATION

Quantum aspects in gravitational collapse: non-locality and non-singularity

The Hamiltonian is now

1 _uG 1
VB-2R, 2R\/R? 2R, +B)
(6)
where B=1—R,/R, Rs = 2GM, and R, = OR/d0v. We
emphasis that so far we did not use any approximations,
so the Hamiltonian in Eq. (6) is exact.

H,u(BRU)<

III. QUANTUM COLLAPSE OF THE SHELL IN
THE LIMIT OF R— 0

The main goal of the this paper is to see what happens
at the last stages of the collapse of the shell, i.e. when
R — 0. Since we have an explicit Hamiltonian of the sys-
tem, we can apply the functional Schrodinger formalism
and study quantum effects near the classical singularity.
In the framework of the functional Schrodinger formal-
ism, we will simply write down the Schrodinger equation
for the wave-functional U[R(v)], and try to solve it.

We first derive the behavior of R, near R = 0. From
Eq. (4), we have

erﬂi‘fgﬁ)g—l. (7)

From here we see that R, = % as R is approaching zero.
Substituting this result in Eq.(7), we find

1/ pG ?
o~ =3 <R) ®)
Thus, the rate at which the dust shell collapses near R =
0 diverges as R, x %.

In this limit the Hamiltonian in Eq. (6) can be approx-
imated as

1 uG 1
H=u-R) | —/———— —5—= 9
w( )lFIRUI R R, )
which gives
H Gu 2
R,=2(—-Z£ 10
(u 2R> (10)

For R — 0, we can ignore the constant term H/u, and
we will again get Eq. (8).
In the limit R — 0, the canonical momentum reduces

to
1 G
=ul+“

V2IR, | 2R

Expressing R, in terms of II in Hamiltonian (9) we get

(11)

G

H —_—.
2R

:—R[l_QHR]l 12)

G w2G
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The Hamiltonian in Eq. (12) governs the evolution of the
collapsing dust shell in vicinity of R = 0. As in the stan-
dard quantization procedure, we promote the momentum
IT into an operator

0
II=—-ih—. 13
o (13)
We can now write the functional Schrodinger equation
for the wave-functional ¥[R(v)]

., Oy

Hiy =ih 50 (14)

and try to solve it. Unfortunately, the structure of the
Hamiltonian (12) is such that the usual treatment is prac-
tically impossible. The main problem is that the differ-
ential operator in Hamiltonian (12) is non-local. This
finding represents a strong support for suggestions that
quantum gravity might be ultimately a non-local theory.
While finding solutions to non-local equations is very
difficult, we will show that it is possible to define a pro-
cedure (similar to the one outlined in [5]) which will lead
to the solution of Eq. (14). We first isolate the non-local

operator A from the Hamiltonian (12)

A 2MR]
A=1|1- 15
[ paG ] 15)
Its inverse is
A 2I1IR
Al =1- 16
2G (16)
We can take care of the operator ordering as
. 1 . 17t
A=1|1—- ——=(IIR+ RII 17
MQG( +RID| (17)
so that
~ 1 N N
A7l =1— — (IIR + RII). 18
2 ([1R + RID) (18)
In terms of derivatives, A= is
N ) 2iR 0
Al =14 —)+ 2 L 19
( +,u2G)+,u2G6R (19)

Let’s define the action of an operator A as Y= A, which
means ¢ = A~ 1y, where ¢ is just some function which
gives the wavefunction 1 upon action of the operator

A. Explicit action of A~! on ¢ converts the equation
A~lp = 1) into a linear differential equation

dy 1 .9 G

— + —(1—iu*G =0 20
ar Tagl — i Gt <o (20)

This equation can be solved to give

ip?

WG [ -2 pdR
= 02 (21)
2 (A—ipsG)
R pl
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Since ¢ = Atp we obtain the action of A as
G [ RS
2 R

()dR

(1—ip2G)
P

A= (22)

where (.) is the placeholder for the function on which A
is acting.

Let’s concentrate on the stationary solutions to
Eq. (14) in the form of

V(R v) = p(R)e' P/ (23)
where v is the time evolution parameter, and FE is the
energy eignevalue. The time independent Schrodinger
equation becomes Htiy = FEt¢. The Hamiltonian in
Eq. (12) in terms of the operator A becomes

_RA_ pG

H r -
¢ TR

(24)

Accounting for the ordering of operators, this Hamilto-
nian becomes
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When A operates on R we get

A(R) = —%R—%“—M/R—%(H@Rw (27)

which yields

—aR+p

A(R): 3—a

(28)

where o = iu?G and f3 is an integration constant. So our
equation becomes

L
2G

p>G

2R

(RAw+aR_5 )

e — By (29)

Now we can move all the terms to one side and separate
the term with the integral

2G \ a—3 2R
(30)
We can now differentiate this equation with respect to R
to remove integration. Differentiation yields

1 4 _H—Ta 1 — 2
e [ (820) 2.
«

1 PO e
H_—ﬁ(RAJrAR)—Fﬁ. (25)
The Schrodinger equation (14) becomes

1/ . w*G
e (RA+AR) + e =By (26)
J

1(l-a
2Rz ( : ) o 2GRRHE) <4GE B
o —

26 —3(1+a) I __
! a(a—3)>R " ] N

(31)

KO‘ —1 + 1) R040) _ 262 (o 4 3)RE6H0) 4 <2GE(§+ 1)  Bla+ 1;) R—;(3+a)}

a—3

This can be written as

dy ai +asR + a3 R?
/ asR + asR? + ag R %
where a; = —p*G*(a+3) , ag = (2GE£7+1) N ggzt;’D’
as = 1+ 37;;’, ay = —2[&2G2, a5 = <4GTE - a(iﬁ—gv)) and

ag = ﬁ This integral can be solved for general values
of constants. However, since we are working in the limit
of R = 0, we keep only the leading order terms

Invy = %dR + constant

Qa4

(33)

Solving this equation and substituting the values of the
constants, we find the solution for the wavefunction

3+iu?G
2

= AR (34)

(

where A is a constant.
density P = ¢* is

The corresponding probability

| v [P = M\R%. (35)

This result is very important. It demonstrates that the
probability density associated with the wavefunction
which describes the collapse of the shell of matter is non-
singular near the classical singularity. In fact, the prob-
ability density in Eq. (35) vanishes exactly at R = 0. It
is remarkable that a simple quantum treatment of the
gravitational collapse indicates that classical singularity
at the center can be removed.

PROCEEDINGS ON LATEST ACHIEVEMENTS IN PHYSICS ON THE OCCASION OF THE 20TH ANNIVERSARY OF THE "PROF. Dr MARKO V. JARIC" FOUNDATION 3



PROCEEDINGS ON LATEST ACHIEVEMENTS IN PHYSICS ON THE OCCASION OF THE 20TH ANNIVERSARY OF THE
"PROF. Dr MARKO V. JARIC" FOUNDATION

Quantum aspects in gravitational collapse: non-locality and non-singularity

IV. CONCLUSIONS

In this paper we studied quantum aspects of the grav-
itational collapse near the classical singularity as seen
by an infalling observer. Since gravity is the by far the
weakest force in nature, we expect that quantum mechan-
ics will significantly modify classical behavior of gravity
only in the strong field regimes, e.g. near classical sin-
gularities. In the absence of a fully fledged theory of
quantum gravity, we worked in the context of the func-
tional Schrodinger formalism applied to a simple grav-
itational system - collapsing shell of matter. We used
the Eddington-Finkelstein space-time foliation which is
convenient for studying the question of the black hole
formation till the very end where the collapsing shell
crosses its own Schwarzschild radius and starts approach-
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ing the classical singularity at the center. We derived
the conserved quantity with the clear interpretation as
the Hamiltonian of the system and quantized the theory.
In the R — 0 limit, we found that the equation which
describes the quantum evolution of the collapsing shell
is strongly non-local. Non-local terms which are usually
suppressed in large distance limit, become dominant in
the near singularity limit. This conforms some earlier
speculations and related studies. As an important step
forward, we managed to solve this non-local equation ex-
plicitly and found the form of the wavefuction. Remark-
ably, the wavefunction and its corresponding probability
density are non-singular at R — 0. This is an indica-
tion that quantization can remove classical singularities
from gravity, just as it was the case with the singular
electromagnetic Coulomb potential.
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