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Since ϕ = Âψ we obtain the action of Â as

Â = − iµ
2G

2

∫
R−

(1+iµ2G)
2 (.)dR

R
(1−iµ2G)

2

(22)

where (.) is the placeholder for the function on which Â
is acting.

Let’s concentrate on the stationary solutions to
Eq. (14) in the form of

ψ(R, v) = ψ(R)eiEv/h̄ (23)

where v is the time evolution parameter, and E is the
energy eignevalue. The time independent Schrodinger
equation becomes Hψ = Eψ. The Hamiltonian in
Eq. (12) in terms of the operator Â becomes

H =
RÂ

G
+
µ2G

2R
(24)

Accounting for the ordering of operators, this Hamilto-
nian becomes

H = − 1

2G

(
RÂ+ ÂR

)
+
µ2G

2R
. (25)

The Schrodinger equation (14) becomes

−1

2G

(
RÂ+ ÂR

)
+
µ2G

2R
= Eψ (26)

When Â operates on R we get

Â(R) = −α
2
R−

1
2 (1−α)

∫
R−

1
2 (1+α)RdR (27)

which yields

Â(R) =
−αR+ β

3− α
(28)

where α = iµ2G and β is an integration constant. So our
equation becomes

−1

2G

(
RÂψ +

αR− β
α− 3

)
+
µ2G

2R
= Eψ (29)

Now we can move all the terms to one side and separate
the term with the integral

∫
R−

1
2 (1+α)ψdR =

4GR−
1+α
2

α

[
1

2G

(
αR− β
α− 3

)
− µ2G

2R
+ E

]
(30)

We can now differentiate this equation with respect to R
to remove integration. Differentiation yields

[
2R

1
2 (1−α)

α− 3
− 2µ2G2R−

1
2 (3+α) +

(
4GE

α
− 2β

α(α− 3)

)
R−

1
2 (1+α)

]
′ = (31)[(

α− 1

α− 3
+ 1

)
R−

1
2 (1+α) − µ2G2(α+ 3)R−

1
2 (5+α) +

(
2GE(α+ 1)

α
− β(α+ 1)

α(α− 3)

)
R−

1
2 (3+α)

]

This can be written as

dψ
=

∫
a1 + a2R+ a3R

2

a4R+ a5R2 + a6R3
dR (32)

where a1 = −µ2G2(α + 3) , a2 =
(

2GE(α+1)
α − β(α+1)

α(α−3)

)
,

a3 = 1 + α−1
α+3 , a4 = −2µ2G2, a5 =

(
4GE
α − 2β

α(α−3)

)
and

a6 = 2
α−3 This integral can be solved for general values

of constants. However, since we are working in the limit
of R ≈ 0, we keep only the leading order terms

lnψ =

∫
a1

a4R
dR+ constant (33)

Solving this equation and substituting the values of the
constants, we find the solution for the wavefunction

= λR
3+iµ2G

2 . (34)

where λ is a constant. The corresponding probability
density P = ψ∗ψ is

| ψ |2 = λ2R3. (35)

This result is very important. It demonstrates that the
probability density associated with the wavefunction ψ
which describes the collapse of the shell of matter is non-
singular near the classical singularity. In fact, the prob-
ability density in Eq. (35) vanishes exactly at R = 0. It
is remarkable that a simple quantum treatment of the
gravitational collapse indicates that classical singularity
at the center can be removed.
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IV. CONCLUSIONS

In this paper we studied quantum aspects of the grav-
itational collapse near the classical singularity as seen
by an infalling observer. Since gravity is the by far the
weakest force in nature, we expect that quantum mechan-
ics will significantly modify classical behavior of gravity
only in the strong field regimes, e.g. near classical sin-
gularities. In the absence of a fully fledged theory of
quantum gravity, we worked in the context of the func-
tional Schrodinger formalism applied to a simple grav-
itational system - collapsing shell of matter. We used
the Eddington-Finkelstein space-time foliation which is
convenient for studying the question of the black hole
formation till the very end where the collapsing shell
crosses its own Schwarzschild radius and starts approach-

ing the classical singularity at the center. We derived
the conserved quantity with the clear interpretation as
the Hamiltonian of the system and quantized the theory.
In the R → 0 limit, we found that the equation which
describes the quantum evolution of the collapsing shell
is strongly non-local. Non-local terms which are usually
suppressed in large distance limit, become dominant in
the near singularity limit. This conforms some earlier
speculations and related studies. As an important step
forward, we managed to solve this non-local equation ex-
plicitly and found the form of the wavefuction. Remark-
ably, the wavefunction and its corresponding probability
density are non-singular at R → 0. This is an indica-
tion that quantization can remove classical singularities
from gravity, just as it was the case with the singular
electromagnetic Coulomb potential.
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